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V. The Gravitational Stability of the Farth.

By A. E. H. Love, F.R.S., Sedleian Professor of Natural Philosophy wn the
University of Oxford.

Received February 16,—Read March 14, 1907.

CoNTENTS.
PART L
Page
Introduction . . . e V4
Statement of the mathematlcal problem e . S
Solution of the differential equations by means of spherlcal harmonlce P £
Adjustment of the harmonics to satisfy the boundary conditions . . . . . . . . . . . 188
The frequency equation and the condition of gravitational instability . . . . . . . . . 191
Instability in respect of radial displacements . . . B A5
Instability in respect of displacements specified by harmomes of the ﬁrst degree . oY
Stability in respect of displacements specified by harmonics of the second and third degrees . . 202
Summary of the solution of the mathematical problem . . . 210
Application to the problem of the gravitational stability of the earth (plopagatlon of earth-
quakeshocks) . . . . . . . . . ... .0 oo o0 o ... .. 218
PART IL
A past state of gravitational instability as a reason for the existing distribution of land and
water . . . . . . 2 Y |
Tllustration of the nature of a hemlspherlcal dlstrlbutlon of dens1ty B &
Effect of rotation upon a planet with such a distribution of density . . . . . . . . . . 221
Effect of certain external forces . . . - P
The problem of the shape of the hthosphere e e e e o e e s 22
Spherical harmonic analysis of the distribution of land and water. . . . o 226
The continental blocks and oceanic regions as expressed by means of sphemcal harmomc% of the
first, second, and third degrees . . . . . . . . . . . . . . . . . . . . .- 236
Geological implications of the theory . . . . . . . . . . . . . . . . . . . . 238
PART L
INTRODUCTION.

1. IF in a gravitating body there occurs a displacement which involves alteration of
density, there must be a tendency for the material to move towards the places where
the density is increased, and away from the places where the density is diminished.
The effect of this tendency, if it were not held in check, would be to accentuate local
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172 PROFESSOR A. E. H. LOVE ON THE

alterations of density. In any body the tendency is partially held in check by the
elasticity of the body, and, in particular, by the elastic resistance which the body
offers to compression. If this resistance is sufficiently great, the body is stable, in
spite of the tendency to instability which arises from gravitation. It is important to
determine the conditions of stability for bodies of various forms and constitutions,
with various distributions of density. The problem of the stability of spherically
symmetrical configurations of a quantity of gravitating gas has been investigated by
J. H. Jeaxs,* and he has drawn from his investigations some interesting conclusions
in regard to the course of evolution of stellar and planetary systems. In a subse-
quent memoirt he proceeded to investigate a similar problem in regard to gravitating
bodies of a more coherent character. A gravitating solid body, such as a planet may
be conceived to be, might exist in a spherical shape with a spherically symmetrical
distribution of density. In the absence of gravitation there could be no question of
instability. The effect of any local condensation would be to set up vibrations, and
the frequency of the vibration of any spherical harmonic type would depend upon the
elasticity of the material. If the resistance of the material to compression is suffi-
clently high the stability persists in spite of gravitation. There are thus two
competing agencies: gravitation, tending to instability, and the elasticity of the
material, tending to stability. In a general way it is clear that, as the elasticity
diminishes, the frequency of vibration of any type also diminishes; and, if the
frequency can vanish for sufficiently small elasticity, the planetary body possessing
such elasticity cannot continue to exist in the spherically symmetrical configuration.
The problem is to determine the conditions as regards elasticity in which the
instability occurs.

A grave difficulty presents itself at the outset. In the equilibrium configuration
the gravitating planet is in a state of stress; and, in a body of such dimensions as the
Earth, this stress is so great that the total stress existing in the body when it vibrates
cannot be calculated by the ordinary methods of the theory of elasticity. In that
theory it is ordinarily assumed that the body under investigation is in a state so little
removed from one of zero stress that the strain, measured from this state as a zero ot
reckoning, is proportional to the stress existing at any instant. In order that this
assumption may be valid, it is necessary that the strain which is calculated by means
of it should be so small that its square may be neglected. Now if we apply the
equations of the ordinary theory to the problem of a solid sphere strained by its own
gravitation, and if we take the sphere to be of the same size and mass as the Earth,
and the material of which it is composed to possess moduluses of elasticity as great as
those of ordinary steel, we find that the strains may be as great as 4, and thus the
strains are much too great for the assumption to be valid. The initial stress existing

* « The Stability of a Spherical Nebula,” London, *Phil. Trans. Roy. Soc.,” A, vol. 199 (1902), p. 1.
T J. H. JEANSs, “On the Vibrations and Stability of a Gravitating Planet,” London, ‘ Phil, Trans, Roy.
Soc.,” A, vol. 201 (1903), p, 157, Quoted below as “ JEANS (1903).”
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GRAVITATIONAL STABILITY OF THE EARTH. 1738

in the gravitating planet, the stress by which the self-attraction of the body is
equilibrated, is much too great to permit of the application of the ordinary theory.
The same difficulty presents itself in every problem concerning the elasticity of a
gravitating planet, for example, in the problem of tidal deformation or of the stress
produced in the interior by the weight of continents. In these problems the difficulty
was turned by Lord Kervin® and Sir G. H. DArwiINT by taking the modulus of
compression to be much greater than that of any known material, in other words, by
taking the material to be incompressible. Their object was to determine the degree
of rigidity which must be assigned to the Earth, and for that object it is permissible
to turn the difficulty in this way. When the problem is that of gravitational
instability this artifice cannot be adopted, because the whole question is that of the
degree of compressibility which is admissible if the gravitating planet is to be stable
in a spherically symmetrical configuration. The artifice adopted by JEans (1903)
consisted in annulling the initial stress by introducing an imagined external field of
force to equilibrate the self-attraction of the planet.

The problem thus posed is an artificial one, which may, nevertheless, throw light on
the actual problem. When the initial configuration is taken to be one of uniform
density, the analysis of the problem is of the same kind as that which presents itselt
in the problem of the vibrations of an elastic sphere, a problem which has been worked
out very completely by H. LamB.] The determination of the effect produced by
gravitation in lowering the frequencies of the various modes of vibration is reduced to
a question of troublesome analytical computation. JEANS worked out the problem on
the basis of the ordinary theory of elasticity, using the elastic constants N and u of
Lamg. The constant w is the modulus of rigidity, and the constant N is such that
A+Zp is the modulus of compression. In the case of the Earth the values of these
constants can be inferred from the observed rates of propagation of the various types
of disturbance which are perceived as earthquake shocks. He concluded that, when
the proper values are attributed to these constants, the Earth must be held to be in
a state far removed from one of gravitational instability ; but he suggested that, if
the resistance to compression was at one time considerably smaller than it is now, the
spherically symmetrical configuration would then have been unstable; and he held
that there are traces of the instability in the distribution of land and water on the
surface of the globe. ‘

The actual problem differs from this artificial problem in the mode of balancing of
the internal gravitation. Lord Ravreica§ has proposed a method of meeting the
difficulty as to initial stress. He proposed to consider the stress in the vibrating

¥ See, in particular, KELVIN and TA17’s ¢ Natural Philosophy,’ Part IL., § 833-846, Cambridge, 1883.

t “On the Stresses caused in the interior of the Earth by the weight of Continents and Mountains,”
London, ¢ Phil. Trans. Roy. Soc.,” 173, 1882, p. 187.

1 “On the Vibrations of an Elastic Sphere,” London, ¢ Proc. Math. Soc.,’ 13, 1882, p. 189.

§ “On the Dilatational Stability of the Earth,” London, ¢ Proc. Roy. Soc.,” A, 77, 1906, p. 486,
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174 PROFESSOR A. E. H. LOVE ON THE

gravitating sphere as compounded of two stress-systems : a hydrostatic pressure by
which gravitation would be balanced if the sphere were in equilibrium, and an
additional stress. He proposed to measure the strain, not from the unattainable
state of zero stress, but from the equilibrium state; and he proposed to take the
additional stress to be determined in terms of the strain by those equations which are
commonly used in the theory of elasticity. To simplify the problem he proposed to
take the material in the equilibrium state to be homogeneous and the elasticity to be
isotropic, so that the equations connecting the additional stress and the strain are of
the same form as the ordinary stress-strain relations of isotropic elasticity. In
justification of the proposed procedure he brought forward theoretical considerations
founded upon the general theory of energy, and other evidence drawn from an
interpretation of the experimental results in regard to the behaviour of elastic solid
bodies. It is not too much to say that all the evidence there is, is just as strong in
favour of Lord RAyLEIGH'S proposed method as it is in favour of HookEs law, in the
sense in which that law is applied in the ordinary theory. The only objection which
can be raised against the method, an objection mentioned by Lord RavrLEI¢H himself,
is that the body to be treated is certainly not homogeneous, and possibly not isotropic.
When the proposed method 1s adopted, the density and the moduluses of elasticity
must be taken to have their mean values. The justification for treating the values of
these quantities at any point as equal to the mean values, is that it is advisable in
the first instance to work out the simplest case.*

In the first part of this paper the mathematical problem proposed by Lord Ravirica
is worked out; and the conclusion is drawn that the effective moduluses of elasticity
of the Earth, in its present state, are sufficiently great for a homogeneous spherical
configuration to be thoroughly stable. The second part of the paper is devoted to
developing the consequences of supposing that the elasticity of the material of the
Earth was once much less than it is at present. :

Statement of the Mathematical Problem.

2. We have before us a perfectly definite mathematical problem, which may be
stated as follows :—A sphere of radius @, and of uniform density p,, is in equilibrium
under its own gravitation, and the stress within it is hydrostatic pressure of amount
p, at a distance 7 from the centre. When any small disturbance takes place, so that

* Tt may be observed that the method advocated by Lord RAYLEIGH is the same, except for a slight
modification, as that which was used in the second edition of my “Treatise on the Mathematical Theory
of Elasticity,” Cambridge, 1906, in the discussion of the statical problem of a gravitating sphere held
strained by external disturbing forces. The modification consists in the assumption, which was there
made, that the material might be treated as incompressible. If this assumption is not made, the analysis
becomes much more difficult. An earlier indication of the method will be found in a paper by J. LARMOR
Cambridge, ‘ Proc. Phil, Soc.,” 9, 1898, p. 183.
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GRAVITATIONAL STABILITY OF THE EARTH. 175

the particle which was initially at (x, 9, 2) is displaced to (z+wu, y+v, z+w), the stress
is specified by six stress-components X,, Y,, Z,, Y, Z,, X,, and these are connected
with the initial pressure p, and the displacement (u, v, w) by the formulee

X (224 80) 1, |
au aw ov
Y, = po+)\<a ay W )+2 ay’

Z =
Y2=H<%Z_”+8v>

where A and p are constants.

N 5 5 . >, (1)
u o w>+2 w

1"°+)‘<a oyt e TR e
/ou 8w> _ _8}:+§z_a>
Kaz X = “<aw dy/’

It is required to form the equations of vibration, and

to solve them, so as to determine the character of the modes of vibration and the
equation for the frequencies, and, in particular, to ascertain the relations which must
hold among the quantities A, w, py, @ in order that any frequency may be reduced to
zero. We proceed to express this problem in terms of a system of differential
equations which hold at all points of the body, and a system of special conditions

which hold at all points of the undisturbed surface.

8. In the equilibrium state the potential V, at any point is given by the equation

Vo=dmpe(Bai=r), . . . ... .. (@)

where y is the constant of gravitation. The equation of equilibrium is

1 op, , 0V,

BP i EEE O
or

0

Poo —fmypir. . @)

 Since Py =0 at the surface r = a, the value of p, at any point is given by the
equation
Po = Fmwypy (0¥ —-77). . R )

‘When the sphere vibrates, the equations of motion are three equations of the type

ou _ 8V oX,  0X, , 0Z,

P ‘é‘i‘g = 6:1; —+ = ax "é&-‘ + "5; e e e e e (6)
where p is the density, and V the potential, in the disturbed state. In the left-hand
members of these equations we may ignore the distinction between p and p,. In the
right-hand members we may put

p=p(l=4), . . . . . . . . .. (N
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where A is the dilatation expressed by the formula

_ou 81) ow

=5 8y i R (8)
Further, we may put ;

V=V+W,. . . . . . . . ... 0

where W is the additional potential due to concentration of density at internal points,
and to displacement of mass across the initial bounding surface. We may neglect
terms of the type p,Ad0W/[ox. When we substitute for X,,... from equations (1), and
make these simplifications, the equation (6) becomes

o av, aw 3
powzpo(l_zs)-gj 0 Pf’ (”)a +pV2u,

On omitting the terms which cancel each other in virtue of equation (8), we have the
first of the three equations (10) below. The remaining two of these equations
are obtained in the same way. Thus we have the equations of vibratory motion in
the forms

-~

i aW
Po 8;‘5 = ()\‘*‘f") +,u,V2u+ FTYPY A+ Py —=— Fy

o™ oA . oW ,
Po s = = (A p) - ay +p V3 +f§nypozyA+p07y—, .. . .. (10)

In addition to these equations we have the equation connecting the potential with

the density in the form
VW = daypA. . . . . o . o o L (11)

The system of equations (10) and (11) are the differential equations of the problem.*
4. Besides satisfying the differential equations (10) and (11), the additional

potential W and the components of displacement u, v, w must also satisfy certain

conditions at the surface » = @. Let U denote the radial component of displacement,

so that
Ur = aut+yv+ew, . . . . . . . . . (12)

and let U, denote the value of U at » = a. The potential W is that due to a volume
distribution of density —p,A, together with that due to a superficial distribution p,U,

* In the problem as formulated by JEANS, when the self-attraction of the body is balanced by an
external field of force, the equations of vibratory motion differ from those which are obtained here by the
omission of the terms such as 4mypy%zA. In Lord RAYLEIGHS paper already cited, the equations given by
JEANS are diseussed in accordance with the analysis which was developed by LAMB in the paper on the
vibrations of a sphere.
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on the surface » = @. By the method of spherical harmonics we can, when W is
known, write down the expression for the function W© which is the potential at
external points of the same distribution. The surface characteristic equation gives

<§%@>= (a;znv> = —4maypU,. . . . . . . (13)

This is one of the conditions which must be satisfied at the surface » = a. To
obtain the other conditions which must be satisfied at this surface, we observe that
the disturbed surface » = a+ U, is free from traction. If 7, m, n denote the direction
cosines of the outward drawn normal to this surface we have three equations of the

type
IX,+mX,+nZ, = 0,

which hold at the surface » = a+U, If in this equation we substitute for X,,...
from equations (1), we see that in the terms containing u,... we may replace ,... by
the approximate values «/r, y[r, zfr. The only term which does not contain w,... is
the term —Ip, arising from —I!X,. Now p, vanishes at » = ¢, and therefore at

r = a+ U, we have
_ 9&)
]90 - Ua(a’)" r=g

to the first order in w, v, w. Hence in this term also we may replace [ by x/r. On
substituting for p, from (5) we find that the equation

ou /ov z [ou  ow
37ryp0aJU+ ()\A+2 é~> o Kax ) ( ) 0

must hold at the surface » = a. By an easy transformation this equation becomes
the first of the three equations written in (14) below. The remaining two of these
equations are obtained in the same way. The equations which must hold at the
surface 1 = @ are therefore equation (13) and the equations

2
Mot 3—(Uw)+r§@i —u+3 TP U =0, |
Iz ox or ©
2
% + ;—(U’I‘) +7‘§2. —v+% W___’};fo yUr =0, & (14)
: 2
Aa (U )+'I Bw —w+2 TP Ur = 0.
I a ® J

These equations can be interpreted in the statement that the traction on the mean
sphere is a pressure equal to the weight per unit of area of the material heaped up to
form the inequality U,.

VOL. CCVIL—A. ’ 2 A
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5. We shall now suppose that the system executes a normal, or principal, vibration
of frequency p[2w, or, in other words, that every component of displacement is
proportional to the same simple harmonic function of pt. The equations of vibratory
motion become three equations of the type

(}\+[L)?—A-+}vau+p0]02’l//+%77’yp02mA+p088‘27=0, Coe o (1)

ox
where W satisfies the equation (11). The solutions of this system of equations (11)
and (15) must be adjusted to satisfy the conditions (13) and (14) at » = a. These
conditions can be satisfied only if p has one or other of a certain infinite set of values,
which are the roots of the frequency equation. The problem of gravitational
instability is solved when we find the conditions that one of the values of p may be
7€ro.

Solution of the Differential Equations by Means of Spherical Harmonics.

6. We introduce the notation

PP — 2 Jﬁ = ]2 s”T')’Po — —
25 h, p , o = §, W =dmryp,E. . . (16)

The equations of motion (15) become three equations of the type

2 2
(V+L)u+<;”72—1)gA ;“2 <%A+3%E)—O R (14

and the equation v’"W = 4myp,A becomes

vE=aA; . . . . . . . 0. (18)
in these equations A stands for :

ow  ov  ow
o * oy R

By differentiating the left-hand members of the equations of type (17) with respect
to x, ¥, #, respectively, adding the results, and simplifying by means of (18), we

obtain the equation

(v+Mﬂ+&%+§gﬁ 0. v v . (19)

The method of solution of the problem is this:—We seek first a solution of the
equation (19) in which A has the form

A=3Sfi()wn, -« . o . . . (20)

where , is a spherical solid harmonic of positive integral degree =, and f, is a
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function ot » which is such that #"f, is finite at all points within » = «, including the
origin 7 = 0. We seek next to determine E in the form

E=3E0etB]l . . . . . . . . . 21

where E,(7) is a certain function of » which is such that +"E, is finite at all points
within 7 = @, including the origin » = 0, and F, is a spherical solid harmonic of
degree n. The equations of motion of type (15) then become three equations of the

type ,
( 2+/c2)u+<7“——1> {a%(ﬂ.w,,)}Jr’%szwz(ﬁ.wn)

3k? 0 3k oF,
+ 203 L2 (B, 0]+ 20 z< > 0,. . . . (22)
in which we must have :
ou  ov  ow
8x+ 8y+ E» =3(fooo) - - . . . . . . (29)

It appears on trial that we can obtain a solution in which
U= U+ Uyt Uy, V=V +0+0; W= WtwWetws; . . . . (24)

where u,, v;, uy satisfy the system of equations
k? 0 k?

(v2+k2)u1+<52—1>z {2 (o} + s (fuon) |

+ 3 { (E, wn)} =0,

oo . (29)
duy | Ovy | Owy _ .
e oy T = 2 J
also us, s, w, satisty the system of equations
(V2+/c2)u2+§£322<a]i> 0, ..., \i
o ¢4}
auz.{.%.}.a_wi 0: l
dr oy 0oz ’ J '

and wu, 75, ws are a complementary solution of the system of equations
(VB = 0, (V4B =0, (F+F)w; =0,

Ous  Ovy 8?03_ Coe e (27)
8w+8y+ 0z 0

7. The sets of functions u,, v, w, and u, v, w, can be any particular solutions
2 A2
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of the systems of equations (25) and (26). It appears on trial that u,, v, w, can
have the forms

w =3[P 2 sy 2 ()],

. S P awn 2nt+3 a W, ]

" = n(r) +Q (7) Q/< a1 , N . . . . . (28)
wy = ﬂ(/))awn +Qn( ) 2n+daaé‘< gr)tl-li-l> 5

where P,(r) and Q,(r) are certain functions of ». Also it is clear that wu,, v,, w, can
have the forms

_ 385 (o8, A (oF, _ 38 0F, ‘
Uy = hz<ex> v= =2 aﬂ o= =23 ()

Further, the forms of ws, v, w; are known from the analysis of the problem of the
vibrating sphere which is free from gravitation. We have

a ) a ) a " LRt a
s [t]/,l(lcl‘) <y a{; _ Zéxy>+llln—1(lc7") a('f[ — n{:,i Yar (k1) 17 ‘;8.7(, <7‘§:+1>} . (30)

N (1 d \"/sinkr
¢n(kr)_<E‘—&—k—;) <T«,~ > A 1)

X» and ¢, are spherical solid harmonics of degree n, and the expressions for v,, w, are

where

to be obtained from the expression for u; by cyclical interchanges of the letters «, ¥, 2.
It appears that to a single term f,o, in the expression for A there corresponds a
definite term F, in the expression for E. Further, when we form the boundary
-conditions, 1t appears that the terms of u,, v;, w; which contain y, represent a free
vibration, and the frequency of this vibration is determined by the same equation as
if the sphere were free from gravitation. Also it appears that to any term f,o, in
the expression for A there corresponds a definite function ¢, in the expression for
Us, Vs, Wy The solution expressed by a single term f,w, of A and the corresponding
terms of (uy, vy, w,), (Us, ¥y, W) and (us, vs, w;) determines a normal mode of vibration.
We shall therefore omit y,, and reduce all the summations to typical terms.

8. If in the equation
(v2+h2)A+réZA+w%§_o (19 bis)

we put f, () . w, for A, we find that f, () must satisfy the equation

d?f 20lf 2_ndj;, 2<0lfn > R N
dr? 'rd'r+9“7¢z7_’+s TE;-H%];‘ +(h+68)ﬁ_0’

or

I e -
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GRAVITATIONAL STABILITY OF THE EARTH. 181

This equation is a linear differential equation of the second order; and the forms of
the coefficients show that the point » = 0 is a critical point, and that there is no
other critical point at any finite value of » If we seek a solution in series of

the form
ﬂ — ao’l'm+0617'm+l+Cl/27'm+2+ vees

we find the “indicial equation”
m(m—1)+2 (n+1)m = 0,

from which either m = 0, or m = —(2n+1). We must take the series for which
m = 0, because r"f, must be finite at » = 0. Further, the form of the equation shows
that this series contains even powers of = only. We assume, therefore, for f,

the form
Jo = Allta®+agt+ . tanr™+...],

where A is an arbitrary constant, and then we find the sequence equation

Ogers (26+2) (264 14+ 20+ 2) +ap, {7+ (n+6) 8+ 2ks’} = 0,
or
o —go PP+ (n+6+26) 8"
Bt *(21+2) (26+2n+3)

Hence we have
_ WP+ (n+6)s* 5 (A4 (n+6) s {AP+(n+8)s") ,
Ju= A[l 2. (2n+3) * 9. 4(2n+3) (2n+5)

AR+ (n+6) 87} {BP+ (n+8)s°}.. {I°+ (n+2x+4) s*} .,
(“){ +(2J.r4?..2}K{(2;+(3)+(2)n+}5)..{.(224(r2J,r<+1J)r) o ] - (39)

The series is convergent and represents the function £, for all finite values of 7.
9. We must next determine the function E, () from the equation

V2 (E,0,) = fro,

d’E, + 2(n+1)dE, _
dr? r dr

or

Fo o e (34)

or

%{T%E"Jr(szrl)En} = rf.

We introduce an intermediate function 6, () by the equation

0n=’r'd;—+(2n+1)En. N 1))

Then

W+ (n+6)s {A*+ (n+6) s*} {A*+ (n+8)s"}
— 152 4 6__
C+A[§’ 2. 4.@2n+3) | 2.4.6(2n+3)(2n+5) ] ’
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where C is constant of integration. Then we have

and therefore )
¢, « 7 P+ (n+6)s 0" ]
E,= at o T A{z.(2n+3) 2.4 (2n+3) (2n+5)+"

where (7' is a constant of integration. Since 1”E, is finite at » = 0, the constant ¢/
must be zero; but the constant C is in our power, and we may choose it in any way
that is convenient. The term contributed to E by C is (2n+1)! Cw,, which satisfies
Laprace’s equation, and therefore any change in the chosen value of C is equivalent
to borrowing a term of F, to make up a term of E,w,.
Now the series
_W+(nt+d)s b P+ (n+4) s} {2+ (n+6) 8%} o
2.(2n+1) 2.4 (2n+1) (2n+3)

satisfies the equation

[CP < +s ,n)g_ wh+(n+4)»2}]{ -}f—oﬁél)s’"”“'}:m

dr® 2(2n+1)
and therefore, if we take for C the value
O=__ 2n+1
P+ (n+4)s* "
the function 6, satisfies the equation
o < >‘ff T () S 0, =0. . . . . . (36)

We shall choose this value for C, and thus we shall have

_ _ 241, KP4 (n+6)s° -t
9"_AI: Wrn+a)s 2 2 d@nts)

w1 {2+ (n46) 8} {1+ (n48) °}... {B*+ (n+2k+2) 8°} o
. () D) 2}1<E2n+(3) (23,+2> {@;'ii{,i i — } (37)
_ 1 7? W+ (n+6) s} r
E”_A[_kz + (n+4) 2+2(2n+3) 2. {4 (2§z+3))(2n+5)

x+1{h+n632 e (n+8)s? J; n2"212.<
(=) ( : )2%27;(3)?27235) {(2—;izt+11; = ] (38)

The function E, satisfies the equation

d2E@+ {2(n+1) }dE
dr? ”

+ P+ (nt4) s By =0, . . . . (39)
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It will be convenient presently to have observed that the equation derived from
this one by differentiating the left-hand member with respect to = can be written

[M {2("—+2)+w}0‘;ﬂ+{h2‘+(n+6)32}]<%%%>=0. .. (40)

10. The forms of wu,, w,, w, and us v, w; have been put down and it remains to
determine u;, v, .  We have a system of three equations of the type

(V2+1?) u, + <§c—:——1> <f %‘;" 1 df >+ %Zsffnan

S 4 /v Qwp | LB, N\ |
+—h—2 <En ax +;~d?wwn> =0. . . . (41)

We express zw, in the form

— 7/'2 awn ,.2n+la @y
m,,_%ﬂ{ax : a_x<m>} L (42

and then the above equation becomes

eyum BB () Ry 3r_dE,
(V'+E) uy = ) (/f 1 f+2n+1d4ﬂ +h2 an+17" 3k AT 0l"“>]

1 s @ B N\1df, 3 dF,
oyl 8m< 2"“) [(f? 1> r dr + (f e >:| (43)

We seek solutions of the system of three equations of this type in the forms of
the type

a 72

ntg O
7[1 - Pn . Qn ks a%< 2n+1) . . . . . . . (44)

in which P, and Q, are functions of ». We find

dr? dr
d2Q 2(n+2) dQ 2 2n+3 a / W, )
+ G Qo 2 ()

r 2n+1 /) °

ox \7

(V1) u, = [”FP 200 ep ] 0w,
.’E

Hence the assumed forms can be adjusted to satisfy the equations if P, and Q,
satisfy the linear equations

d’P,  2ndP, ., (K r df,
di? + dr P, = &hﬁ 1><f+2n+1 do>
B/ 3r dE,
N <2n+1f"+3E "t ont1 d¢> (45)
d2Q 2(n+2)dQ, _ 1 k2 1 df, lc2 3 dE,
dr? ” dr + Q. 2n+1 {<772_1>1"d E <f”+ 7”>} - (46)
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The right-hand members of these equations can.be simplified by introducing the
functions 6, and » ' dE,[dr. We have

rdf, _1d#, r d (/1d6,
f+2n+1 dr 75l7+2n+15l;'<17 dw)

2
1 <d0n+2nd0>

2n+1 dirt o dr
and

n 30"> ;

3r dE, 1 d0
f+ 2 +1 dr 2n+1< dr

and thus the equation for P, becomes

d’P,  2ndP,

4n .2
dr Tt r dr FHED,
_ 1 <@+g@o@>_ 1 _lc2<ol20+2nd0,, . db, ,20>
T on+1\d? o dr) 2n+1R\d* v d dr 77"
_ 1 [d6, 2ondb, 2>_1 [2_@?{2 } K ]
—2n+1<d¢2 pdr ) g | FO e M (a4 )57 6 3670
by the equation (36). Hence we have
—_— Hn /
Pn—2n+1+Pn, N V4
where P/, satisfies the equation
d*P’, anPn opr _ N+l B
dﬁ T +ik P, = —_‘—2n+1h280"" C e e e e e e e e (48)
Again, we have
1df, _d{dzE 2(n+1)0lE}
rdr  rdr dr? rodr
_li[i{ <1dE>} 2(n+1)dE:]
T rdr|d dr r o dr
1

_ (L4, > L 2042) d (1 olE>
T dr?\r dr r  dr\r dr

3dE, _dE,  2(n+1)dE, , 3dE,

and

el e LI
L 1dE>+z(n+3)9@,,
d7 \7 dr P dr ’
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GRAVITATIONAL STABILITY OF THE EARTH. 185
and thus the equation for Q, becomes

d2Qn 2(n+2) dQn
dr? r

1 [l <1dE>+ (@tg)"d(lolEn)}
T 2n+1 Ld? dr 7 dri\r dr

+1Q,

+ 1 ﬁ[_o_liG dE) 2(n+2) d <1 _0{12) s d (1 dEn
2n+1 02 dr?\r dr r  dr\»r dr. dr\r dr
+2(n+3)s <1 dE")]
i d
_ 1 d? /1dE, (n+2) d /10lE,,> . ldEnﬂ
In+1 [olrz <4/‘ ol7'>+ r  dr\r dr + (rﬁv—:

+—2—n—1_|~_~]—[762<-; Oillj:n)—__ (R4 (n+6) s <1 dE) B om+3)s <1 ddEnﬂ

(s

by the equation (40). Hence we have
Qn =

where , satisfies the equation

11 dEn
T on+1lr dr

+QL . . . . L. (49)

d’Q’, (n+2) OZQ 20/ n kK ,1dE,
dr? + Qn—2/+1]€§é’7‘d’}"' .. .. (50)

11. To find the form of P’,, we assume

1 &
P, = 2,}:&_:—1h2 SA (potpsr+pat+..). . . . . . . (51)
Then equations (48) and (37) give

2n+1
k2 2(2 1 = —_ "
v+ 2(2n+1) P W+ (n+4)s”
kKps+4(2n+3)p, = %,

_ P+ (n+6) ¢
2.4, (2n+3)’

ll

k*py+6 (2n+5) ps

2, P+ (n+6)SH{A+ (n+8) s
Fpst8(2n+7)ps = 2.4.6(2n+3)(27(b+5))8}’

see o

Epoct (26+2) (204 26+ 1) Pogs

= (- )K+1{h+(n+6) s {FP+ (n+8) Y. I+ (n+2k+2) 2}
2.4..2x (20 +8) (2n+5)...(2n+2k—1)

VOL. CCVIL.—A. 2B
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By these equations p, is left arbitrary, and ps, p,... are determined when p, is
chosen. As we need a particular integral only of the equation for P’,, we may choose
P In any way that may be convenient. We shall put p, = 0. Then

_ 1 _ L 1 k? )
P2 = 2{W*+(n+4) s}’ p4—2.4(2n+3) 2.4.(2n+3) P+ (n+4)s’
Pe= — 1 {}ﬁ+(n+6) S+ + —]“4———}
2.4.6(2n+3) (2n+5) WP+ (n+4)s°)°
1 . - (52)
= W 6) s’ {W* 8) ¢?
Ps 2.4.6.8(2%+3)(2n+5)(2n+7)[{ + (14 6) 3 {4 (0 +8) 7
2772 2 4 K __:l
+E{ WP+ (n+6) s’ +k +h~——————2+<n+4)82 ,
To find the form of Q),, we assume
Q= " F A (gt gt gat+..) (53)
S e T Gotqer®+qat+...). e

Then equations (50) and (38) give

1

A = e
Fqy+2 (2n+5) s = Tt
‘ W+ (n+6)s*
2 —_—
Fgo+4(2047) qu = (7 +3) 0 1)

2 2 2
gy +6 (2n+9) g5 = (B4 (n+6) s} {h*+(n+8)s°}

T 2.4(2n+3) (2n+5)(2n+7) ’

AR+ (n+6)s*H{ A+ (n+8) s’} .. {B+(n+2k+4)s}
2.4...(26+2) (2n+3) (2n+5)...(2n+2c+3)

k9q2K+ (2K+ 2) (2n+ 2k+ 5)\_(sz+2 = ("')

As before, ¢, can be chosen arbitrarily, and then ¢, gy,... are known. ‘We observe

that if we put
S 2p, _ 4p, Poe = (2K+ 2)}92K+2
D=gr3 LT o5 v BT oni 2w+

g eee

the sequence equations for the ¢’s are transformed into the sequence equations for the
p’s, beginning with the equation containing p,, p. We shall therefore choose g, to
be (2n+38)7'2p,, and then

Q=g o Ben 2oy Ay S b (59)

T on+1 4 Mm+3  2n+5H 2047
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This choice of the ¢’s amounts to subjecting the functions P’, and Q/, to the
equation

d o osrsyy 7 n+1@z
= Qn)—mrz T ()

To see that this equation is compatible with the differential equations (48) and (50)
for P/, and Q',, we observe that

db, _ 1 d {7.2“3(_1_ @z)}
dr P dr r dr)|’

and that from the equation (48) we can form the equation

d _2<n+1) d 2 n"‘l)} ont1 AP, >_ n+l £ , d{ 2n+3<1@y>}
{%‘2 e ( ) it ol s @)

while from (50) we can form the equation

& _2m41)d g, (n+1)}{i M,}_ n k_22i{2n+3<1dEn
{dr P PR e V) = e Td?)}'

12. We have still to satisfy the condition

du; , dv; |, dwy _
%+—ag/-+ 5 —fnwn R 1))

If we form the expression in the left-hand member from the expressions of the
type (44) for u,, v, w,, we have

oy avl+%_{ndPn n+1l d
9 dy 9z

By means of the formulz (47) and (49) for P, and Q,, the coefficient of w, in the
right-hand member of this equation is transformed into

1 Ec—igl‘ nt+l d [ auszdE, n+1l n pndP,  d ooy
2n+1[¢dﬂr 7_"‘3"—*20[_1«(7”‘ dqﬂ)} 2"+2[n+11 dar —377(7' Qn):l

The first term is equal to

2n+ : —— [nf,+(n+1)f,] or f,,
and the second term vanishes identically in virtue of equation (55). It follows that,
with our choice of p, and ¢,, the equation (56) is satisfied identically.

13. We have now completed the determination of the forms of w, v, w in terms of
the spherical solid harmonics w,, F,, ¢,, and of certain functions of », viz.: f,, 6,, E,,
2 B2
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P, Q. ¥, Various relations between these functions have been noted incidentally.
It will be convenient hereafter to have noted the following properties of v, (kr) :—

—1) kZ,},,2 ]C47’4
bt = 1'3°§"-(;n+1){1_2(2n+3)+2.4(2n+3)(2n+5)— }‘ (57)
{cl(cll;f +2 (771:1) d (0/;) +1}¢n (kr)y=0,. . . . . . (58)
b W) g () = = (s () @0t D) ()} (59)

d (kr)

Adjustment of the Harmonics to Sutisfy the Boundary Conditions.

14. In order to express F, in terms of o, and ¢, we use the condition that
4myp, (E,@,+F,) is the potential at points within the sphere » = @ of a distribution
of volume density within the sphere and of surface density on the sphere. The
corresponding external potential is

tmypy (@]} B (a) 0,4,
where E, (@) 1s the value of E, at » = @. The surface density is p,U,, where U, is

the value at » = a of the radial displacement U. Hence we have the equation

d s 2n+1 ) 0 .
&K%) {E, (a) ?’71+Fn}]‘é‘;(Enwn+Fn) = -

which holds at the surface » = «; it gives

[<2n+1 E, + —@—">wn+ 2n+1 FnJ - U,
r d’)" r r=a

Now ,
U = {2, (0 1) rQu o= 25 Bt 2 (s () 4B () .

It follows that the equation

{2n+1 3ns? ¥F [ — (n+1)rQ, —@—-2”’“&} ~

ah? | 7

2 (i () R ()

holds at the surface » = @. Since this equation connects the values at » = @ of three
spherical solid harmonics of the same degree 7, it holds for all values of 7, and gives
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GRAVITATIONAL STABILITY OF THE EARTH. 189

a generally valid expression of F, in terms of w, and ¢,. By means of equations (85)
and (59) the equation becomes

}2

=  3ns+ (2n+1)

h2[{0 —nP +(n+ D)o’ Qu} =0 @yt (2n+ 1), (ka)d,]. . (60)

15. The three remaining conditions which hold: at the surface » = o are expressed
by equations of the type

% ke
(12 2>“A+a (U +r—ut BgmTU =0, . . . . (61)

Every term of the left-hand member can be expressed in terms of the spherical

awn q,.2n+3 a (_q’_&>, a¢n 72n+3 a < (bn >

solid harmonics

ox’ o \ 11 oz’ O \pr#n+1
We have , ) s ,
7 w, " " o,
oh = o fo = gy e ey )
Also '

rU = {nP,— (n+1)"Q,} w,—n(2n+ 1), (k) ¢,

3ns® . "
T St (@ s 1) hg[{ﬂ —nPy+ (14 1)0*Qu} = 04+ 0(20+1) Y (k) ,],

and therefore

a _ 2 37’182 _ 2 :l@g)’ﬁ
2 00) = [1Pum (4 )P Qb g T (=Pt (14 1) Q)

- [n(.‘zfn-l— ), (k) — — I ) A2 ‘I’"(lm)] aa(fcn

3ns®+ (2n+1
" a n n a n
+ o {nP —(n+1)7"Q,} =—— il {8(; —7° “§£<;—2wn—ﬁ>}

el (00 2 (4]

dr ox e \ 1

Again,
Py = { d(f” +(n—2)P, }%w” { T (r"**Q,) — (n+ 3)’7*2"+3Qn}i<§%>

or 7

ow

r=ay — +n(2n+1),

3(n—2)s ,
3ns® -f-l(Qn-)l—l)hzl:‘g —nP,+ (n+1)a’Q,}

+ {T—‘—’J"—?‘fé@ + (n—2)¢ _l(kr)}%%‘

%

| .
= B [ o b)) = 8) ) | ()

n+1
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Further,

2rU = [nPn— (n+1)1°Q,

\

3ns? _ ’ 2 jl r? {aw” 2n+la<w,, }
St @y OB (e DaQen s (5 T )

—n(2n+1) {%(k?") - 3nsz+?gfj+ 1)h2‘l’ 2 (ko )} 2;_2'_ 1 {%ﬁi ot 830( (étrjrl)}

16. The equations which hold at the surface 7 = @ can be arranged in such
forms as

Anaw"+Bn7'2”+3a<w”>+C 90 4 D,y 2. <7,2n+1/~—0 e (62)

aw aw 2n+1

in which A,, B,, C,, D, are certain functions of , viz.:

_(E_g) o 3ns’ (2n+1)R? \
A"_(lzz 2)27z+1f"+ 3n32+(2n+1)h20"+ 3ns*+ (2n+1)h 2{nP (n+1)a’Q,}

dP” + (n—2)P,

2
+2n+1d {nP,—(n+1)a’Q, }+a

8(n—2)¢
3ns’+ (2n+1

kP’ 3ns® @n+1)R* o 2
(2n+ 1)h? [‘3ns *+ (2n+ 1)K bt 3ns®+ (2n+1) A {nPu=(n+1)a Q"}]’ - (63)

G [0,—nP,+ (n+1)a’Q,]

—_— _]_cj___ ' 1 1 2 dQn
B, = <h2 2)2n+1f 2n+1ada{n1’ (n+1)aQ}+a +1Q,

S 3ns (2n+1)1° _ 2
(2n+1)h?[3n82+(2n+1)h20” 3n32+(2n+1)h2{nP” (n+1)a Q"}]’ - (64)

Gy = | (n+1)pu(ha) + o L () = 2B )|

%g;;i)(s;z(fm}) (ka)+a =Y (k) + (n—=2) s (k)
n(2n+1) sk
3%92—(‘27%%)7;24‘"(7‘6@ T (1)

=" i \pn(lca) — Lkz{a%xpnﬂ(ka) +mpn+1(ka)}

n(2n+1)s%*
3ns*+ (2n+1)

m(ka) oL (66)

In these formule « is supposed to be written instead of + in the expressions for

j;u 07» Pm Q
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17. We may express A, and B, in more convenient forms by the use of the
identities
nP,—(n+1)*Q, = 0,—(n+1) E,+nP,—(n+1) a’Q’,,

de,
da %o
d’E,  2(n+1)dE, _
dZ2 T 4 da =Ju
adEn _
da n ny
dq/, ) __n 1dP,
@ +(2n+3) Q, = i da
We find :
]Cz 0(, P,n 071. I~
A= 72 2n+1(f+8 da <2n+1 + P”)

6 (n—1) *—k*s’a®

Bns+ (2n+ 1) {(n+1) E,—nP,+(n+1)a*Q,}, . . (67)
— ]C2 2 2711+ 4 ]_ d]Jn dQ’n _ !
B.= - E 2n+1(f+ 0)+2 +1a do ada Q'

k2 2
" 3ns? +(2n+1)H° {

(n+1)E,—nP+(n+1)a’Q,}. . . . (68)

We may also express C, and D, in simpler forms by the use of the equations
connecting the y functions. We find

0 (1) 22 (2n+1)? 2 ns®
o= —2(n-1)Fa [‘l'"“ Fo)t Gt @t 1) B a FAACOR Sns"+ (2n+1) 2 ""‘(k“)}
(2n+1) Kka®

S e, (@)
D, =k [H 1{¢,,(ka)+(2n+4)¢n+1(lca)}+3712;222'2%;),&9%(76&)]- C o (70)

The Frequency Equation and the Condition of Gravitational Instability.

18. Exactly as in the problem of the vibrating sphere which is free from gravitation,
it follows from the equations of type (62) that we must have at once

Ao, 4+Codo =0, and Bw+Dubo=0, . . . . . (71)
and the frequency equation is of the form
AD,~BC,=0. . . . . . . ... . (12

The forms of all the functions which enter into the expressions of A,, B,, C,, D, have
been determined.
To investigate gravitational instability, we have to determine the conditions which
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must hold in order that the frequency equation may be satisfied by p* = 0. When p*
vanishes, 2° and % also vanish, but the quantity A°/h*, which is (A+2u)fp, has
a determinate value. We may not, however, obtain the result which we seek by
first replacing k*/A*, wherever it occurs, by (M+2p)/u, and then putting A* and A*
equal to zero wherever they occur, otherwise than in the ratio #*(h”. This pre-
cautionary statement is necessary because it appears from the formulee (69) and (70)
of § 17 that C, and D, both vanish if #* and %* vanish. Thus we ought to regard
the equations (71) as being equivalent to the equations

Ao, +(Chk?) PP, =0, B,w,+(DL™?) ke, =0;

in other words, we ought to remove a factor %* from the equation A,D,—B,C,=0
before putting 2> = 0 and /> = 0. An exceptional case occurs when n = 1. In this
case C,k~* vanishes when 2* vanishes, and it will appear that A, also vanishes with A%
and the equations (71) ought to be regarded as equivalent to

(A7) @+ (Ch7%7%) (Bdy) = 0, Biw +Dik™2 (Bh,) = 0,

and we must remove a factor 4*A* from the equation A;D,—B,C, = 0 before putting
=0 and k*=0. When we proceed in this way, the equation A,D,—B,C, = 0,
with the appropriate factors removed, and with A* and %* put equal to zero after
their removal, becomes an equation to determine §’a*, or §mypa’/(A+2u). If the
equation has a real root, the value so determined for s’a® gives a value of N4 2u for
which instability can occur. Since k*p, is a finite multiple of w, when A+ 2u has any
such value, it is certain that the homogeneous spherical configuration really is unstable
for such values of A+2u. If the value of A+2u belonging to the body is but little
greater than the critical value, the equilibrium is practically unstable ; for a large
displacement takes place if the sphere begins to vibrate according to the type
specified by the degree n of the corresponding spherical harmonic function. For
practical stability it is necessary that the value of A+2u should be well above any
critical value. The equation which yields the critical values contains the constant
(M 2p)/p as well as s’a” It will be convenient to write

_ ok
=t TR (73)

v

The value of » dannot be negative, nor can it be greater than 4. If the Porsson’s
ratio {A/2 (A+pu)} of the material is positive, » cannot exceed %. If the modulus of
rigidity w were very small in comparison with the modulus of compression A+ Zp,
v would be very small. If the velocity of propagation of waves of dilatation were
twice that of waves of distortion, » would be %. This appears to be the most
appropriate value to assume in the case of the Earth (see § 40 below). Since it is
improbable that the ratio of the rigidity to the modulus of compression of the Earth
has diminished since the date of consolidation, it will be sufficient for our purpose to
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examine the two cases in which »=0 and v»=31 We have now to discuss the
conditions of gravitational instability in respect of the values 0, 1, 2, ... of the number
n which specifies the type of vibration.

Instability in Respect of Radial Displacements.

19. The case in which n = 0 is the case of a sphere vibrating radially. This case
is not very easily included in the foregoing analysis, and it is very easy to investigate
it independently. Let U denote the radial displacement. Then U is a function of r,
and we have

u=—99U, v=gU, w:zU, A_O._@I+2_q
7 7 7 dr 7

We go back to the equations (15) of the type
oA oW
(M p) o+ pViut pp*ut+smyplehtpo 5= = 0,
where W, the additional potential, is a function of . This equation is
dU 20U & 2d\(U\, jxed /U o
O} o+ ) e fe (G 2 ) (525 o5 o U

dU 2U>+ x dW

+5* (N +2p) <——+ po g =0 . (74)

Now
d*W 2 dW <0lU 2U>
+ = = 4myp, ,

drt v dr T+7

and therefore we may write

dW _
—O—Z—/["— = 4:77"}/p0U+R,
where
Oél—R+2R =0, or R#?®= const.

Since dW /dr is finite at » = 0, we must have R = 0, and thus equation (74) becomes
after division by (N+2p) @/r

d’U  2dU 20U dU 3 2

W"“;—d? 74—8( ar +2U)+3SU+}Z,U-—-O . (75)
where s* = gmyp’/(\+2p) and A® = p°po/(\+2p). This equation can be solved by
means of a series, which is convergent for all finite values of #, in the form

r 468 5 (465 (h+857) ;5
Y= A[ 5.3.5 7 2.4.3.5.7

_ye (B 65) (B +85°) ... W+ (2+4) 8%} asr ]

(=) 2.4...2¢.3.5...(2c+3) -+ (76)
VOL., CCVIL-—A. 2 o
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where A is an arbitrary constant. The second solution of the differential equation
for U becomes infinite at 7 = 0, and thus the above is the most general form for U.

20. The condition that the surface » = a+U, is free from traction can easily be
shown to be the condition that

2aypirU+ (A + 2/1,)— +2}\E =0

at » = a. Hence we have
dU 2 .2 Ua —
<~(i_7'>a+(2 4v+sa/)~&~— 0O,. . . . . . . (77)
where v = p/(\+2u), so that 2\/(A+2p) = 2—4v». The frequency equation is
therefore '

2 2 .
F(1+2—dv+sa®)— g2685a2(3+2~—4v+320¢2)+..‘.
2 2 2 2
(_)K(}l +63 )( +88) {h +<2K+4) } 2K(2K+1+2 4V+32a2> — O. . (78)

2.4...%.3.5...(2+3)
The condition of gravitational instability is obtained by putting A*=0. It is

£ (B—dv+5a’)— 68 o«

(5 dv+sa )

(_)x 6. 8...<2K+4) SQK&2K .
5. 4..%¢.3.5...(2k+3)

21. The coefficient of s*a* in the left-hand member of (79) is

— )« k+2)(2k+4 2K 2k+2
( 8) {(2 _g><<21<:3)) (2K+3'——4v) (A (24;<+)1—)}

(;)KH:% . 5...1(2K—1)+ 3. 5...1(2@1)}

1 2 1
_”{3.5...(2K—1)+3.5...(2K+1) 3.5...(2K+3)H’

and the equation (79) can be written

4 6 2 4
(o 1 w__>]
2[<1 .”/c—|~3 3.5+...>+< 3+3.5

(2k+3—dv+5a®)...=0. . (79)

where z is written for se. Now we have

T R x3 xs
j e dx = e <J~—3— + —...),
0

and therefore
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and the equation may be written

1-y<1—xlz>—[<1—501-2> < 5 bliﬂ e-ﬂzﬂewda@=o..'. . (80)

22. The left-hand member of equatio'n (80), being equal to
2 (I1—%v)+2 (2v—3) 2 +.

is positive when « = 0. To determine its sign for large values of « we observe that
z 1 ) z
." e de = [ e’fﬂdw+f e xdr
0 0 1
1 . z
= j' e%’”zdoc+m"1e“’~"2—-eé+J' x e dx
0 1

1 z
= .( e*’zdw+x“‘e%’”z—e*+oc'3e%’2——e*’+3[ x e da
0 1
, .
and therefore there is an asymptotic expansion® for ace"w[ dx when x is large in

the form -0
142724327 +3. 527 %+3.5.7x7%+....

Hence the expression in the left-hand member of (80) is asymptotically equal to

11 1 2 1 1 3 3. 5
~*; the term of highest degree
It follows that the expression is always negative when x is
sufficiently great. The expression therefore changes sign for some positive value of «,
and the equation (80) has at least one positive root.

23. When » = 0 the equation (80) becomes

The term of highest degree independent of » is —2x

containing v is 8va™"

2 z
X _']. -1
1—=——e¢ 5”2{ edx = 0.
X 0

If #* < 1 the left-hand member is necessarily positive. We shall take 2* > 1 and
write the equation

xr 122 i 122,
——— e —| dx = 0.
=1 0

Let y denote the left-hand member of this equation. Then we have
dy 12 1 902 2{1’;2 2 2
LY _ e _ bl 2 e
dx = ¢ z[acz—l T AT (x*—1)? } (x2—1)2€
Since this expression cannot vanish, the equation cannot have more than one positive
root.

* For the suggestion that this step might prove useful in demonstrating the existence of a root of
equation (80) I am indebted to Mr. G. H, HARDY, Fellow of Trinity College, Cambridge.

2 ¢ 2
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Again, when » = 1, the equation can be written

3+ lz - <3-—- %+ —11> {x"’-—xe"%"zj‘ mzei‘”zdw} =0,
&€ X i 0
or

(5—3&32)903 172 jx 2%12 _
se—zi+10 1), =0

where the left-hand member is certainly positive when a* < 1; also the differential
coefficient of the left-hand member with respect to x is

_ 8a*(34°—2) e
(3r* =227+ 1)° °

and this expression cannot vanish for any value of a which is greater than unity.
Hence the equation (80) cannot have more than one positive root.
24. Now take » = 0, and write the equation (80)

1 x® at
—(1=-+ X . )=0. . . . . . . . (81
2—1 < 3733 ) 0 (81)
When #? = 4, we have
x? ot 4 42 >
-4+ % . =(1-2 N
5735 <] 5733
_ 44128 4 <]__4;>_ 49 <1_f_1_>_
©8.5...13 8.5...15\ 17/ 8.5...19 21) 7

and
1 45045

_1_
2—1 8 38.5...138°

Hence, when 2? = 4, the sign of the left-hand member of the equation (81) is plus.
When «* = 5, we have

22 at 5 52
1"5‘_“':'3—.‘3—...—1_5'*"3—._5 e e
_ 20056 N 15625 < __5~>
T 8.7.9.11.13.3 38.7.9.11.13.3.1%7 19

+ o <1——5-)+
3.7.9.11.18.3.17.19.21 23/

Also
15625 14
and therefore
5 5 20733
I=3+35 257 3.3

but
1(3.7...13.3) = 20270+% < 207383.

Hence, when «? = 5, the sign of the left-hand member of equation (81) is minus.
It follows that the value of #? or s’a? which satisfies the equation is between 4 and 5.
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25. Again, when » = }, equation (80) can be written

3% +1 @ at >
—— — (1 —— - )=0. . . . . . . (82
2t — 227+ 1 (1 3735 0 (82)
If we put «* = 4, the left-hand member becomes
13 4 42 >
1— oo )
: 41 < 3 T35 3.5
Now :
4 42 645461 48 / 4\
-2+ % = -
RS Il v T A NS TAC )
and
13 _ 10
11 (8.5...15) = 642715+ .
4 4? 13 . .
Hence 1-§ te > and the sign of the left-hand member of (82) is

minus when 2 = 4. When we put «* = 3, the left-hand member of (82) becomes
%—<1~§+3325 ),
R A 5.79.11<1—%ﬁ+”’)
='§“5’,—7L,11<1"%+“'>’
12> (g g )

or the sign of the left-hand member of (82) is plus when «” = 3. It follows that the
root of the equation (82) for & lies between 3 and 4.

but

and

Instability in respect of Displacements specified by Harmonics of the First Degree.

26. When n >0, we have to calculate expressions for A,, B,, C,, D, from the
formule of § 17. If n =1, we have

2,2
A, = A_——(fl+sz 1)+adP B SRR Q). . (83)
Now if we put #° =0 and &* = 0, we find
_ 78’ 9s'at _\e(2k+5) s*a™ :I
fl_A[l 2. 5+2 i e e s
_ ’7 stat _yer1 (264 8) ™0™ :l
) e s

2k—2 ., 2¢ -1

_3
5+
s’a . §*%
[_ .5+z.4.5—"‘(“)2.‘4...2K.5"‘_l’
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and therefore, if we put A =0 and #° = 0 in A,, we get

2 2 2 44 2
1=0&_2_é[1_§1+w_._, s’ }
2k

3v b 2 2.4 ()24

9 A ) 820&4 . S2/<—2OL2K '}
— (0] e\ ™) T,
+ 3v b [ + ( ) p .. |

b

= 0.

It follows that A, vanishes to the first order in 72 and %% and therefore, as has been
explained, we must evaluate the limit of A;A™° when #* and %* vanish. We have to
expand the terms of fi, s°0, and adP’,/da correctly as far as /2; in calculating the
remaining terms of A, we may put /? and £* equal to zero in E,, P'; and Q';.

The terms of /; which are of the first order in A® are

@ | 7.95%" <1 1) e 7.9...(2645) s <1 1, 1) ]
Ak[ 5579.4.5.7\779 e ,) 2.4...2K.5.7...(2x+3) 7+9+“j+2x+5 o

The terms of s°0, which are of the first order in A* are

31 s°at 7.9...(2c+3) s a* <1 1 1 ) }
AR S — — 22— (=) et )
[55s 2~4‘5Jr (=) 2.4..2c.5.7.. (2x+1) 7+9+ +2K+3 .

Hence the terms of (f;+5°0,) @*/3v which are of first order in h? are

Ao’ 8 o 95a* g { < 1 1 )} 1
avay 9y IS () S 1y
15v [532 TR RO v LA VRS R 10
Again, when we keep those terms only which are of the first order in A? and %2, we
find from (52) of § 11, :

_1 R
P =g a5
__ 1 B
D= e
1

R Y ¢ 3 T £
Po= = ggg.5 7 ),

1 22<1 1> 2 2}
= . h/ by - «
Ps 2.4.6.8.5.7.9{7 W \g+3)tETs ),

o 1 < R A :
Po= 2.4.6.8‘10.5.7.9.1117 9. 11sh 5t 1 /”‘7 9. 8}’

Pac= (=) 1 : {7 v (26+1) ™70 < NI )
" 9. 4. 2x.5.7...(2x+1) 779 2kt 1

TR (zk_us}
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and therefore the terms of adP’,/da which are of the first order in #* and £* are
32 A [2p,0® + 4pya*+ ... 4 2kpa 0™+ ],
14
where p,,...have the above values, that is to say, these terms are
QAR o s*af g <1 1 1 > J
15v [38—2 g7 )2 4.. (2K—2) 7re Tt o)

2AF s*a® . s }
+ 15;»‘[2.5 CRST AR S Sreen s P SRR B

It follows that the terms of the first order in #° and £* in

o’ dP’
S (fits0; dal
are '
Aha? [}_ o Sat (=) s ]
15y [ 2 2.4 77 2.4..2¢ "
2Ak2a2 [_]; gf _ l 82(]/4 ( )K+1 1 82:4—20/2,: ]
15» |5 2 72.4 2k+32.4...2«
or they are

Alc2 phar | 2A Ko’ (1 sa’ 1 s'at s >

155 15sw \b 2 72.4

Again, when we put /* and £* equal to zero, we find

2A 2 2 S4a4 82;<a2/< 3
2B, =28 —14 22 — v (=) 2
! sl: +2 2.4 ()24 2K_|’
2A82“a2 a4 2 S 4a2;c }
_P/ [ il VA k+1
YT 15w 282 2.4+246 - (=) 2.4...2c"
2A¢? a?> la* 1 saf g%
22Q, =227 | 2 2% 2 S (=)
@ 15u[ 5t rg g )(2K+3)2.4...(2K—2) }

and therefore the terms of the first order in A% and 4* in

2.2 .2
_ B8 om P soarq)

3s*+ 1’
are
1 2A e, 2A [ SPa? stat S
— 1w oy 20 (5D e (=) .
3 “[ 5¢¢ Teimles aag (D) 2. 4...2¢ (2c+3) H

Hence the terms of A; which are of the first order in A? and A2 are

]. A]C2OL2 e_%szaz

5 & ’
and
. A, Ad? b
hm;%=o h2l=§; b . .. . . . - (84)
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27. Again, when we put 4* = 0 and #* = 0, we find that

1 2dE ol !
CBi= = () + W,
where
1 ) 2A[ sa? - stat ™o
- =221 22 4 2% (=Y
5, (itsh) = — > st (T s ]
2@_%[1_@+84“4_ (=) S
ada 5 2 2.4 7 2.4..2¢7" )
S dQ, , A1, s 3Bsat bl (2x—1)82"a2‘
o Q1'15v 5727 2.4 (=) 2.4...2K.(2K+5)’”]

_ A /6 sa? (6 sta* (6
—mi% 1) 3%71%“?@ Q
2k

. STa 6
(_)2.4...2K<2K+5 1>]

_ A_e-rw+ 2A /1 _1s%° 1 s'a* >
15v 5v< )

Hence we have, when A* = 0 and #* = 0,

2A. 1 _122 2A (1 1s OL 1 stat
1= eweyp 22 1sa Llsa
B = < >€’ {5 72 T92.4 }

5 2v Y
Ao B s
v 0

Also when n = 1 we have

C,=C, = 3 \,t;n(La),
and therefore
limyoy 25 = — 2 . (86)
=0 h2/62 382 3 e . . . . . . .

and we have also
D, = D, = ¥ [§ (ka) +8ss (ka) + (L +1°/s*) "W (ka)],

and therefore

. D 3 1 3
].],mk=0-k—21=§< 3 >+3'?r‘5="“i—6.. . . . . . . (87)
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28. In the case where n =1 the condition of gravitational instability, viz.,
limk=O(Alh—2D1k—2"“B101h—2k—2) = O, becomes

3 Ao& ..512 002 {A.< 1> 1622 ZA _5}’ 4 —1z2 }
FEL (2= 2 )e ™ 2 (5a) P ate i da b = 0. . (88
T2 I Gy G- COM § ,( )
But we have
j we ¥ dr = — (sPa®+ 380&)@“‘5'*2“2+j e " dux,
0 0

and therefore the condition of gravitational instability becomes

0

0 _ 1
3j e"«”"””doc-—e‘w“”{ 3sa+ (su)®+ <—é—% —v> (so&)? = 0.

If now we put

So? = x? = 228,

the equation becomes

3«/77[\/”_{ ‘ﬂdt] 2{32+2zé+'<}5—9—4u>z5}=0, co - (89)

where the factor 277* has been inserted because the expression in the square brackets
is tabulated in many easily accessible books.

Let y denote the left-hand member of the equation (89). When z is small, y is
small of order 2%, In fact, we have

z _ _ 22 4 5 2x,2x+1
Pdt =e ™24+ -+ ..+ — ];
joe ¢ [z R B SR P L R

and when z is small, the first approximation to # is —(8—4»)2". When 2 is great,
J- ¢”"dt is approximately equal to 4,/7; and thus y is positive when z is great. The
0

equation (89) has a root zero and at least one positive root. The zero root is
irrelevant to our problem; it is introduced in transforming equation (88) into
equation (89). Now we have

g__z?z 4*22{(15 20u)——(19 —20v)z }

and, since 15—20v and 19—20» are positive when » <3, the expression last written
vanishes for one positive value of z.  Hence it follows that the equation (89) has only
one positive root, and there is one and only one positive value of s%? which satisfies
equation (88).

By means of the tables it can be shown that, when » = 0, the root z lies between
1'9 and 2, so that s%a? lies between 7-22 and 8. When v = + the root z lies between
18 and 19, so that sa? lies between 648 and 7-22.

VOL. CCVIL—A. 2o
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Stability wn Respect of Duisplacements Specified by Harmonics of the Second and
Third Degrees.

29. When n =2 and hé =0, ¥* = 0, we have
olP 3

A, = A, _—~(f2+s20)+a +2 62+3E2+3a,2Q'2,

where

B 2k ~ 21
fimAl1= 8 ey 810 gy g 8.10..(2+6) 0 ) ]

AR W 2. 4...26.7.9...(2c+5) "
r 5 88a 8 10 (2k+4) P ]
0= A= 2 +pa-
: A_ 6$2+2a 2. (=) .2K.7.9...(2K+3)

1, a 8s’at 8.10...(2x+4) 8™ *a™ ]
E,=A-— - v (4 ) o
: sto 7 2479 (=) 2.4..2¢.7.9...(2c+5)

P’ =382A[_ o’ + at 85 (=) 8.10...(2k+2) s™ a> - }
7 by 128 2.4.7 2.4.6.7.9 7 2.4...2c.7.9...(2c+3) " )

Q, = 2A¢° [_ 1 + o 8%t (=) 8.10...(2x+4) s* o™ }
T L 6.7 2.7.9 2.4.7.9.11 7 2.4...2.7.9...(2c+7) " S

From these we find

A = _2A0’T1_ §d? + 8s'at (=) (2c+2) (2x+4) s™a™ :}
2T by 6 2.7 2.4.7.9 V7 2.4.6.7.9...(2c+5) "

_6AT 1 S + 8stat (= (2c+2) (26 +4) o™ ]
by 16.7 2.7.9 2.4.7.9.11 V)9 4.6.7.9...(2+7) "
3A[ sha® + 8s'at (- (2x+2) (2x+4) o™ :l

6 2.7 2.4.7.9 TV /2.4.6.7.9...(2k+5) "
2A[ s’ 8s'at (= (2k+2) (26+4) s™a™ :]
6 2.5 2.4.5.7 7 2.4.6.5.7...(2¢+3)

By means of the identities

(2e+2) (2e4d) _ 2 3
(2c+3) (2k+5) 2k+8  (2k+3) (2k+5)
(2x+2) (2¢+4) _ ;6 4 15
(26+5) (26+7) ~  26+5  (2x+5) (2k+7)’
(26+2) (2x+4) _ 1‘ 2 1
(26+1) (2¢+3) 2k+1  (26+1)(26+3)°
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we transform the series

1 1 ax? 4 8t _ ( ¥ (2K+2) (2k+4) ™ ]
56 2.7 2.4.7.9 7 2.4.6.7.9...(2¢+5) """ [
1 x? + 8t () (26 +2) (26 +4) x> ]
5 7 2.7.9 2.4.7.9.11 7 2.4.6.7.9...(2c+7)"""
F_ @ N 8t (=) (26+2) (2 + 4) ™ :]
6 2.5 2.4.5.7 ° 2.4.6.5.7...(2c+3) "
respectively, into the forms
1 2. 3 1 3 1 2 3
— 1=+ 2 ) (= 2 f (RIS
16[( 3*3.5> ”<3 3.5 357>+”<3.5 3.5.7 3579> ]
_1_'[<1 6 ) <,1_ 6 15 >
6\37 35" 7, 3 5.7 3.5.7.9
< 6 . 15 >_ ]
T 8.5.7.9 8.5.7.9.11) ")
1 1 2 1 1, 2 1
—(142—2) -1+ 2= = _—)—...
16[( 2 3> x< 3 3.5>+w<3+3 5 3.5.7> ]

i%[<1—§+§g%—'"> 2<51% 39625+?9§47_"'>+3<3%5_3.22.7+3.5w.47.9_“'>}

6<31.5"3.922.7+3.5w.47.9_“‘>
+15<3.;.7_3.5%27.9+3.5.;Gj‘9.11_"'>]’

%[<1—w2+§—%+...>+2<1—-§+39.645—...>—<%—§9?_25+3‘§4.7_m>]_

Now we have

I
8&

+
Sl

I
T

z
— = m”‘e“%“’2j edu,
0

1 -3 —%z? Z %12
—= =% eda,
x 0

ol =
(V]
ol
o
(]
ﬂ

and therefore the three series are respectively equal to
1 2 3 g [* e 1,3
16 |:<1+ + >oc 5 Le’} dx— <52+924>]’
11,15 /1 6 15 —wr o
16[:904+9(;6 <x2+904+x>% “ ) dz |,

Té[l—gé—<x2—2—9?2>x le—# J'Oe% oloc].

2 D 2
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On substituting for the three series in the expression for A, we find

A2 - AQL. [__ — ..é?. —_— (]_ — ._1_. — _._];.?.. — ,49‘) (Sa)_le"'%ﬁ“? J‘s’ae%ﬁdw}
\ 0

8v [ s%a® s%° sSa? stat %l
A 17 45 ( o 32 45) . _j
1682[2 2R o ‘2 —19— 55— (sa)7'e K de ..(90)
30. Again we have, when 4’ = 0 and #* = 0,
8 dE, . dQ
B= — L (frst)+ o Tralle_q,,

and with the values already used for f,... this gives

B. — A1 §d? 8sta* (=) (2k+2) (26 +4)82“a2“ ]
2T T hl6 2.7 2.4.7.9 2.4.6.7.9...(2c+5)"
8A[1  8s%* 8.10s'a* (_)K(2K+2) (2 +4) (2c+6) s*a™ ]
7T 7.972.4.7.9. (F 2.4.6.7.9...(2c+7) 7
2A[_ 1 _ sa® | 3.8¢%" (_)K(ZK—I)(2K+2)(2K+4) }
Tyl 6.7 2.7.9 2.4.7.9.11 7 2.4.6.7.9...2¢+7) )

The first of these series has already been transformed into

.A. 2 3 1 —%s2a2j ;‘IQ d ( ]_ ——3-_'>]
_W[<1+W+s4a4>(sa) 0 Y\ s 2t )|

By means of the identity

(2K+2)(2K+4)(2K+6)_1_ 3 + 9 _ 15
(2c+3) (26+5) (2c+7) ~  2k+3  (26+3) (2c+5)  (2k+3) (2k+5) (2k+7)

we transform the series

1[1 8x? (=) (2+2) (26+4) ™ :l
7 " 2.4.6.7.9...(2c+7)""

17/, « o > . <1 a? at A < 1 a? at >
L Y A A P ) (=g — )9 (= + -
16[&1 3+3.5 \3 3.5+3.5.7 ) 3.5 3.5.7 8.5.7.9

—15
&

which is the same as

1 3 9 15 al_wy w/_<1 15>}
16[(1+ + ot > | e dax m2+964+906 ,

Ot =

x? xt \}
773.5.7.973.5.7.9.11 ) ’
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and by means of the identity
(2k—1) (2c+2) (26+4) _ 10 51 120

(2c+3) (2 +5) (26 +7) =l=gst (2c+3) (26+5)  (2c+3) (26+5) (2c+7)

we transform the series

_1{__ 1 2 . 3.8 (_)K(2K—1)(2K+2)(2K+4)m2~ ]
50 6.7 2.7.9 2.4.7.9.11 7 2.4.6.7.9...(2c+7)

into

1 x? at <1 x? xt > <1 x? at >
L=, = 51 —
]6[<] st35 > B it T R o R ST L WA O
1 a? xt \]
120(3 57 73.5.7.93.5.7.9.11 ) ’

which is the same as

L1010 3L 120)gragoae g g (14 11, 1209]
]6[<1+ + 2+ >we o da §m2+m4+x6)'

Hence we have

B, = A—[—%— + 25 + 240 _ <3+ 22 + 105 -+ §4O> (sa)te "*sng b dcc]
0

16v|s*a®  s'a* s’ sa?  s'at
- % [ggla'—é + 8-%; + 5%&5—6 - (1 +;%-2 + ST?JL; + %%) (sa)"te7#™ ﬁaeé""’ d’v] . (9
Again we find o
lim,,=0%=—??.—15'—?(832@2+175u), e e e (92)
and
N ()

Hence the equation lim,—, (A,Dyk™2—B,Cok™%) = 0 is

(82°+175v) [(*35 + 2‘2 + 240) <3+ 22 }Qﬁ 240) w“‘e"*ﬂj e dx
@xt x® x x® 0

1 15 3.9 15\ o\ pul o
(g Bt e ]
o )-8 o
—V{<2—.1—Z-i—§>—(2 ~19-22 4f>x'1e'*z’[oewdx”=o,. (94)

where  is written for sa. A factor »™s has been omitted in forming the equation,
as neither » nor s is supposed to vanish, The terms of lowest degree in the left-hand
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member of the equation (94) will be found to be 480» (24v—19), which is negative
when 4> » > 0. Hence the left-hand member of this equation is negative when
x = 0. Also it will be found by the method of asymptotic expansion (¢f. § 22 above)
that, when « is great, the left-hand member is approximately equal to —1280x7* for
all values of ». After the previous cases, in which the corresponding equations have
a single root, we are led to expect that in this case there is no root, for it is unlikely
that there is more than one. We proceed to verify this expectation in the cases
where v = 0 and v = 1.

31. Multiply the left-hand member of (94) by x* and put » = 0. We get

8 [(3x4+25;c2+240) — (82°+22x*+ 1052°+ 240) m"le'%"zj

0

el ol.cc]

+33 [(2664—-90) — (22— 2a'—302*—90) w‘le‘%ﬁf et olac] =0,

0

or, since 10 is a factor,

9x*+ 202’ — 105 —(92°+ 11a*—152°—105) w“le‘%ﬂy e dx = 0.

0

The term of lowest degree in the left-hand member, when expanded in powers of
x, is —18x%; when x is great, the left-hand member approximates to —128. Now
multiply by x¢!*, and put

Y = (9m5+20x3_105m) 6%9;2_ (9586'1'1]174"'15&’)2—105)]. A dup.
0

We know that when x is small » is small and negative of the order —%", and that
when z is great y is great and negative of the order —128xe*”. Now

% — (5da'—300%) ' — (5da+ 44z’ — 30x) j ¢ da,
0

and, if we put z for &7 dy/du,
z = (54a’—30x) ¥ — (54a*+ 442°— 30) j & d,
0
where z 1s negati\?e both when z is small and when « 1s great ; also

dz _ 88zt — (216x°+ 881) re’ﬂzdw,
dx 0

and if we put w for «™* dz/dz,
w = 8820 — (21627+88) | ¢,

0
where w is negative both when x is small and when « is great; and now

dw _ — 128" — 432 jxewdw,
da 6
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which is always negative. Hence w is always negative, and therefore dz/dx is always
negative, therefore also z is always negative and dy/da is always negative, and
therefore ¥ is always negative. Thus the equation ¥ = 0 has no real root other than
the irrelevant root = = 0, which was introduced in the process of forming the
equation.

Again, when » = %, we multlply the left-hand member of (94) by 2° and obtain the
equation
(232°+ 1282 —7 022+ 3675) — (282 + 1052%+ 268+ 1 1550* + 3675) w4 5 ¢ dx = 0,

0

of which the left-hand member is of the order —a® when @ is small and —a* when «
is great. We put

= (2327 +1282°—702° + 3675x) ¢ — (232 + 1052 + 268t + 115502 +3675)j & da,

and then we put
1 dy 1dz 1 dw

r==2L = U ===
xdx’ xdx’ xdx’

and find
% = — (512" + 455222+ 3640) ¢+ — 8832 j & da,
0
which is always negative. Just as before, we deduce that y is always negative.
It is therefore proved that the equation

limh=0 (A2D2k_2_B202]C-2) = O

has no real root. _
32. When n = 8, and A? = 0 and %* = 0, we have

dP’;

Ay = L (frrsy) + 20,40
A VT da

1yt (4E3+ 102QYy),

93—:;?<1—87a2+§?%— (_)Kzszaz;ic >’

Pyt - A O )

E3=§2< ;+;a9 2. ; ()T g S?Z(2K+7) )

@ = 3?%("7.19 TR I A s 4-.-2Kf;;“j:5)(2k+7)'°'>'
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We use the identity
4 2 9
(2k+5)(2c+7)  2k+5  2+7

to transform Q’; and then we use the results

Sy ST -
1— . — %s?a?

5 t94 €
1 S2a2 34014 —7j‘sa 6 —1g2
=— — ... = (s 2Pe™¥ d,
7799 3 411 (sa)™"), w
1 820,2 S4CL4 _q-ra 8 ,~1a?
= — .= (sa) | ale ¥ de.
97211 2. 4.13 (sa)™), v

We thus find

A; = — ﬁz |:3 (sa)7° ra abe ¥ de—2 (sa)‘7ra 2Pe ¥ da
77/8 0

0

+ye i 4 —2—81/(86@)'7ra9066"5’”“(lm]. . (95)
3 0
Again we have, when h? = 0 and £* = 0,
1 29y 4 0L dB,  dQy
By= =, Ukt + 0 50 Fagy — Yo
and here we have
wd_Q_’_g‘__Q, _ _%[_J__ s*a? 4 3stat (=) (2—1)s*a™
da : vl 7.9 2.9.11 2.4.11.13 7Y 7 2.4..26(2c+7) (264 9) ]

while the other series can be obtained from those written above. We use the
identity

o S S

(26+7)(26+9) 2k+7  2x+9

to transform the series last written, and we use also the results which we used in
obtaining the expression (95) for A;, and find

B, = hé [12(8a)“7jwocﬁe‘%ﬁn]w—15(30(,)‘9ra xbe ™ o+ 1Ou(sa)‘9rax8e"%ﬁdx] .. (96)
IR% 0 0 0

We find also the results

i e ™ < - 3 2 2 - - . . Y .

limy, -, 5 3'5.7'9.82(23a +49v), f (97)
. D, -3

hInh:oZ:?;‘3 = m . . . . . . . . . . . . (98)
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Hence the equation
limh=0(A_3D3ku2—B3O3k—2) = O
becomes

3 [(3902—!— %v) a7 j 2l ¥ da 4 ve ' — 290“7]' acse”'%’”?dmj

0 0

- %(2x2+ 49v) [129&“7rm‘*e“%’2dﬂc-—(15-—1Ov)m_grwse‘%"2dw:| =0, . (99)
.0 0

where x 1s written for sa.
83. An irrelevant factor » has been introduced into the left-hand member of (99).
We find that when @ = 0 this expression becomes : .

v 1960
o <539 -5,
which is positive for all admissible values of ». We find also, by the méthod of
asymptotic expansion, that the expression is positive, when x is great, for all values
of v.  We proceed to show that, in the important cases v = 0 and » = £, the equation
has no real root. The left-hand member of (99) being an even function of «, we may
treat a as positive, ‘

When v = 0, the left-hand member of equation (99) is

zm" [7902 j‘ ale ¥ doc——Zf x2le ¥ dw] ,
9 0 0 .

which is positive for small values of @. The differential coefficient of the expression
within the square brackets is

T
14 j ale ¥ dx+ hale ¥,
0

which is positive for all real values of 2. Hence the left-hand member of
equation (99) cannot be negative if « is positive, or the equation has no real root.
When v = %, the left-hand member of equation (99) becomes

x? [_(-499 axt— 1:;2 ac2> ‘xmﬁe"%’g dx— (g? x?— —L?i?)[ xle ¥ dac:] + L—(O;e"%zz = 0. (100)
J0 0 .

The expression within the square brackets is greater than
5 (x*—8a7) rw‘*e“%’z du—(32*—22) j e dw, . . . . . (101)
0 0

where this expression is obtained from the other by replacing every positive coefficient
by the next smaller integer and every negative coefficient by the next greater
integer.

VOL. COVIL—A. 2 E
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Since

z z
[ e ¥ dy = —ale 4 7§ abe ™ de,
0 . 0

the expression (101), when multiplied by 7, is

(5a*—36x°+154) rwse‘%ﬁ de+5 (x®=3)ae™. . . . . (102)
0

Also we have
T i /1 a? at
e dp = af ’”<»~ >
L r=re gty mito s )’

and therefore the coefficient of 2%™#” in the expansion of (102) is §(154—9 x 15), the
coeflicient” of x"e™ i 4% (154—36x11+5x99), and the coefficient of x'**e % for
all values of k which are greater than 1 is

1 154 36 +5>
- 9. 11...(2c+5)\(26+7) (26+9) 2c+7 /)’
or
20x*+ 88+ 145
9. 11...(2x+5)"

Hence all the coefficients are positive, the expression (102) is positive, and the left-
hand member of (100) is positive for all positive values of «. Thus, in this case also,
the equation (99) has no real root.

Summary of the Solution of the Mathematical Problem.

34. We have now solved in essentials the mathematical problem of the vibra-
tions of a gravitating sphere, initially homogeneous and in a state of hydrostatic
pressure, and have found the conditions of gravitational instability. We have shown
that, when any normal, or principal, vibration is taking place, the dilatation at
a distance » from the centre is specified by the product of a certain function of » and
a spherical harmonic of positive integral degree. We have shown further that, in
each.such mode of vibration, the components of displacement can be expressed in
terms of the same spherical harmonic, and that the radial displacement at a point
distant » from the centre is the product of a function of » and the same harmonic.
We obtained the form of the frequency equation, and the forms of all the functions
which enter into its expression.

We proceeded to investigate the conditions which must hold in order that the
frequency equation may be satisfied by a zero value of the frequency. We showed
that, when such a value is not introduced irrelevantly in the process of forming the
equation, its occurrence points to genuine gravitational instability. We found that
the condition of such instability is the condition that a certain equation, containing
the variable quantity s%? or $myp/(A+2u), may be satisfied by a real positive value
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of this quantity. The constant w denotes the rigidity and A+2u the modulus of
compression. When the harmonic specifying the vibrations is of zero degree, that
is to say, when the vibrations are radial, we found that the critical value of s%a?
lies between 4 and 5 if v, or pw/(A+2u), is zero, and that it lies between 8 and 4 if »
is 1. In the case of vibrations specified by spherical harmonics of the first degree, we
found that the critical value of s%® lies between 7:22 and 8 if » =0, and it lies
between 648 and 7-22 if v = 1. In the cases of vibrations specified by spherical
harmonics of the second and third degrees we found that there is no critical value of
s’’, or that the sphere is stable, in respect of the corresponding types of displacement,
for all values of N+2u. It was to be expected that the critical values of s’a* would
increase rapidly as the complexity of the type of vibration, specified by the degree of
the appropriate harmonic, increases ; and we appear to be justified in concluding that
instability cannot occur in respect of displacements specified by spherical harmonics of
any degree higher than the first.

85. The result that the critical values of s’a® are lower when v = 1 than when v =0
means that a higher value of the constant N+2u is required, to secure stability,
when there is considerable rigidity than when there is very little rigidity.  This
result accords with general dynamical principles; for it is a known result, and one
which has been shown to be in accordance with such principles, that the frequency of
any mode of vibration, involving compression, of a sphere free from gravitation
diminishes as (A+2p)/u diminishes, that is, as v increases.* Consequently, for a given
value of yp,’@? the value of yp,’a’/(A+2p) which would be required, in order to reduce
the frequency to zero, diminishes as » increases, or the critical value of A+ 2u increases
as v increases.

36. The result that the critical value of s’¢® is lower when n = 0 than when n =1
means that a higher value of N+2u would be required, to secure stability, in the case
of radial displacements than in the case of displacements specified by spherical
harmonics of the first degree. The spherical body of uniform density could be stable
in respect of all types of displacement except radial displacements. If the value of
s’a® were intermediate between the critical values corresponding to n =0 and n =1,
this would be the case ; and the body would tend to take up a different configuration,
in which the density would be more concentrated towards the centre. The result
that, in the case where = =1 also, there exists a critical value of s’»® which
is not more than twice as great as the value associated with n = 0, the initial
state in both cases being one of uniform density, suggests very strongly that there
would be a critical value of X+ 2pu, in respect of the case n=1, even if the configuration
were such that the body was stable as regards radial displacements. We should then
have a body with a spherically symmetrical distribution of density, but with elasticity
too small for this configuration to be stable in respect of displacements specified by
spherical harmonics of the first degree ; and it may be inferred that the critical mean

* Cf. H. Lams, loc. cit., ante, p. 173.
2 E2


http://rsta.royalsocietypublishing.org/

/an
A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

212 PROFESSOR A. E. H. LOVE ON THE

value of A+2p for such a body would not be very different from the critical value
obtained for A+2u by treating the body as homogeneous, and paying attention to
those types of displacement only which are specified by spherical harmonics of the
first degree.

87. If this conclusion is admitted, as I think it must be, it would follow that a
spherical planet with a spherically symmetrical distribution of density, and stable as
regards radial displacements, might be unstable as regards displacements of the type
in question ; and then it would tend to be displaced in such a way that the boundary,
or any concentric sphere, moves to a position in which its centre no longer coincides
with the centre of gravity, while the matter in a thin spherical layer becomes
condensed in one hemisphere and rarefied in the other. The density being in excess
in one hemisphere and in defect in the other, and the excess or defect at any point,
at a stated distance from the centre, being proportional to the distance of the point
from the bounding plane of the two hemispheres, the distribution of density may be
aptly described as ““ hemispherical,” and the state of the body may. be described as one
of “lateral disturbance.” The concentration of density towards one radius, on which
the centre of gravity lies, has the effect of diminishing the potential energy of
gravitation, and this diminution may more than counterbalance the increment of
potential energy due to strain. The proved existence of a critical value for A+2u (in
the case of a homogeneous body) indicates that this state of things really can occur.
An illustration of the nature of a hemispherical distribution of density will be found
in §§ 47, 48 below.

38. The results found by JEANs (1903) in the solution of the problem of the
gravitating sphere subjected to an external field of force, which balances gravitation
throughout the sphere when it is at rest, may be compared with those obtained above
in the case where the gravitation is balanced by initial pressure. In JEANS solution,
just as here, the modes of vibration are specified by the spherical harmonics which
enter into the expression for the dilatation; and, in any normal mode, the formula
for the dilatation contains a single spherical harmonic, and the radial displacement
at any stated distance from the centre is proportional to the same harmonic. If the
degree of the harmonic exceeds zero, instability can occur for a sufficiently small
value of the resistance to compression, whatever the degree of the harmonic may be.
It is not restricted to the case where the degree is unity, as it is in our problem of
initial stress; but the value of the resistance to compression required for instability
diminishes rapidly as the degree of the harmonic increases. Instability enters first
when the harmonic is of the first degree,® that is to say, for lateral disturbances.
The critical values of s’a® are 672 when » = 0 and 5'33 when » = £, the degree of
the harmonic being unity. Since these values are a little less than the critical values
found in the solution of the problem of initial stress, it may be concluded that the
effect of initial stress, as compared with that of an external field of force, is to

* The question of radial instability was not considered by JEANS,
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increase slightly the stability of the body in respect of disturbances specified by
harmonics of the first degree, and to increase it enormously in respect of disturbances
specified by harmonies of higher degrees.

Application to the Problem of the Gravitational Stability of the Earth.

39. For a body of the same size and mass as the Earth, the values of @ and p, in
C.G.S. units are 6:37 x 10* and 5'53 ; the value of y being 6'65x 107%, the value of
trypia’ is 83'46x 10" In the following table the first column gives a value of s%a?,
the second column gives the corresponding value of A+ 2u (the body being of the same
size and mass as the Harth), the third and fourth columns give the values of the
corresponding moduluses of compression in the cases where » = 0 and v = £, irrelevant
entries being omitted. These moduluses are denoted by %, and k. The quantities
given in the fifth, sixth, and seventh columns are the moduluses of compression of
steel, glass, and mercury (denoted by £, k,, £,,).

s2ul. A+ 2. ko. . ks, ky. T
— — — — 1-43 % 1012 — —
3 1-15 x 1012 — 7-68 x 101 — — —
4 8:64x 101 | 8:64x10 | 5-76x 10U — — _
5 6-91x 1011 | 6-91x 10" — — — —
— — —_ — —_ 4-54 % 1011 —
648 | 5-33x10u1 — 3-57 x 101 — — —_
7-22 4°79% 101 | 4-79x 10 | 3:19x 101 — — _
8 4-32x 1011 | 4-32x 101 — - —_ _
— — —_ — — — 960 x 101

According to these results, a homogeneous solid body of the same size and mass as
the Earth, with a modulus of compression as great as that of steel, would have
complete gravitational stability. If the modulus of compression were equal to, or less
than that of glass, the planet would be unstable as regards radial disturbances, and a
concentration of density towards the centre would take place. If the critical value of
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A+2un, which was found in the case of lateral disturbances, is assumed to be the
critical mean value of A+2u for a planet in which the mass is condensed towards the
centre, then we may say that, if the mean modulus of compression were about equal
to that of glass, and there were very little rigidity, the planet would be unstable as
regards lateral disturbances; but, if there were considerable rigidity, it would be
stable. If, on the other hand, the mean modulus of compression were decidedly less
than that of glass, though not so small as that of mercury, the planet would be
unstable as regards lateral disturbances, even though it possessed a considerable mean
rigidity.

40. In order to settle the question of the gravitational stability or instability
of the Harth, we must assign the appropriate values to the constants A and pu.
Lord KELVIN'S theory of elastic tides in a solid sphere led to the result that the tidal
effective rigidity of the Earth is not less than that of steel. This result suggests
that u should not be taken to be less than 8:19x 10" C.G.S. units; but, since it was
obtained by treating the Earth as incompressible, it affords no means of determining
the value of \. JeaNs (1903) proposed to deduce the values of N and p from the
observed velocities of propagation of earthquake shocks. In a homogeneous elastic
solid body, free from gravitation and initial stress, irrotational waves of dilatation are
propagated with the velocity [(A+2u)/p,J, where p, is the density, and equivoluminal
waves of distortion are propagated with the velocity [n/p, [, while waves of a third
type are propagated over the surface with a velocity approximately equal to
(0°9) [1/po)f. When a great earthquake takes place, the disturbance received at a
distance from the source consists of three sets of disturbances: two sets of
“ preliminary tremors,” and the “main shock.” The first set of preliminary tremors
is received at distant places at such times as it would be if it travelled directly through
the Earth with a velocity of about 10 kiloms. per second. The second set of tremors
is propagated apparently in a rather less regular fashion, but the times at which it
can be observed at distant stations are nearly the same as they would be if it travelled
directly through the Earth with a velocity of about 5 kiloms. per second. The main
shock is received at distant places at such times as it would be if it travelled over the
surface of the Earth with a velocity of about 3 kiloms. per second.* The identification
of the three sets of disturbances with the three sets of waves which are theoretically
known seems to be inevitable, and the discrepancy between the ratio of velocities of
equivoluminal and superficial waves and the ratio of velocities of the second set of
tremors and the main shock may be explained by the supposition that, while the
velocity of transmission of these tremors depends upon the mean rigidity of the Earth
as a whole, the velocity of transmission of the main shock depends upon the average

* Reference may be made to a Memoir by R. D. OLpHAM, “On the Propagation of Earthquake Motion
to great distances,” London, ¢ Phil. Trans. Roy. Soc.,” ser. A, 194, 1900, and to the Reports of the
Seismological Committee of the British Association, in particular that published in ¢Brit. Assoc. Rep.,’
1902,
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rigidity of surface rock. Assuming this explanation, we are led to attribute to surface
rocks an average rigidity approximately equal to 6 x10" C.G.S. units, and to the
Earth as a whole the much higher mean rigidity 1:38 x10* C.G.8S. units ; further,
since the ratio of velocities of the first and second set of tremors is approximately
2:1, we are led to assume for N+ 2u the value 5:53 x 10" C.G.S. units, and for », or
p/(N+2p), the value 1. By analogy to the ¢ tidal effective rigidity ” we may introduce
the phrases “ seismic effective rigidity ” and * seismic effective modulus of compression ”;
and the values of these quantities would be 1-38 x 10" and 3'69 x 10" C.G.8. units
respectively. When the value of A+2p for the Earth is taken to be 5:53 x 10", the
corresponding value of s’ is 0625. The results of § 89 appear to warrant the
conclusion that the moduluses of elasticity of the KEarth in its present state are
sufficiently great to render a spherically symmetrical configuration completely stable.

41. In obtaining the above values for A+2p and p no account is taken of
gravitation or initial stress, and it is possible that the most appropriate values would
be a little different from those found above if gravitation and initial stress, to say
nothing of heterogeneity of density, could be taken into account. For this reason,
although a complete solution of the problem of wave-propagation in a gravitating
planet, even when it is regarded as homogeneous, cannot be obtained, the following
argument may not be without value:—The equations of vibratory motion of a
gravitating sphere in a state of initial pressure have been obtained in § 3 above.
From equations (10) and (11) of § 3 we can deduce the equation

‘a~t2— -— T V A+ 68 A +S /, é? ) . . . . . . (103)
and the three equations of the type
Ow, { . s?/ oA 8A>}
== Ve, — —(Yy— —2—), . . . . . .
ot? Po @ 2v (\y 0z ? oy (104)

where =,, m,, =, denote the components of rotation, so that

9e. = ow o

Z-—_é‘y—_—a—z‘,.... . (105)

In a general way we can see that the terms which contain s* in these equations are
small compared with the remaining terms; for, if waves of length L are propagated,
V?A is of the order L %A, and s*A is small in comparison with this in the order s?I2,
which is comparable with L?/a? since s’a® is comparable with unity. It would thus
appear that the velocities of propagation of the waves are not much affected by
gravitation and initial stress when the wave-length is small compared with the radius
of the sphere; and the conclusion would be applicable to superficial waves as well as
to waves of dilatation and waves of distortion, because such waves are, in any case,
to be investigated by means of equations of the types (103) and (104).
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42. In the case of waves of dilatation the argument can be put in a more definite
shape. Let us suppose that, near a place, the waves are plane, so that A is a function
of x and ¢, and let us write

Vi=0+2u)py - - - - o . . . . (106)

so that V, is the velocity of waves of dilatation when gravitation and initial stress
are disregarded. We have the equation
PA 5, O0A L, 1 OA
37 +s w%+63A =vear
or
82 }s%22 2 /11 1 2, 2> 38222 — 1 82 }s2a2
8932(6 A)+s (—2— 757 (e¥7A) = Wé?z(e A).
In considering the passage of waves near a place, we may treat the term —sz* in
the coefficient of ¢**’A as a constant ; and then the equation is satisfied by putting

e A = B cos {QWL_I(w—%"Vllt)}’
provided that

12 __ 2 ___§_2L__2 1_1h_22\}
V2= 1{1 4ﬂ2<2 4390). N e 114

Since the greatest values of s%* are comparable with unity, the value of V’;, the
local velocity of transmission, is a little less than V, or the actual value of N+2p is a
little greater than the seismic effective value. The result (107) may be accepted as
being not far from the truth in a region large compared with the wave-length, and
small compared with the radius, and situated at a considerable distance from the
source of disturbance.

43. Since the equations of type (104) contain the dilatation as well as the
components of rotation, it appears that the customary law of independence of waves
of dilatation and waves of distortion ceases to hold when gravitation and initial stress
are taken into account. It appears also that the velocities of propagation, both of
those waves which are mainly dilatational and of those which are mainly distortional,
depend on the wave-lengths, and, for the same wave-length, they vary from place to
place. When the theory can be developed further, these results may possibly prove
to be useful in explaining the observed irregularities in the propagation of the
tremors which are recorded in the ease of great earthquakes. The high values which
seismic observations lead us to attribute to the elastic constants of the earth as a
whole are in accord with Lord RAvLEIGH'S view* that great initial stress increases
the effective values both of resistance to compression and of rigidity.

* Lo, cit., ante, p. 173,
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PART II.

A Past State of Gravitational Instability as a Reason for the existing Distribution
of Land and Water.

44. Although the conclusion reached by JEANs (1908), that a spherical planet of
the same size, mass and elasticity as the Earth, in its present state, would be in
a condition of gravitational stability, is confirmed and strengthened by the present
investigation, it by no means follows that the Earth has always been in such a state
as it is now. The fact that the mean density of the Earth as a whole is greater than
the average density of surface rocks points to a concentration of mass towards the
centre, and suggests that such a concentration may have come about through the
elasticity having once been too small for a homogeneous state to be stable. We have
seen that this would have been the case if the modulus of compression was once as
small as, or smaller than, that of glass. But we also saw reason to think that, if the
mean modulus of compression was once decidedly less than that of glass, spherically
symmetrical states of aggregation would also have been unstable, and the body would
have existed in some other state. Further, we saw that, if the body was at rest, the
state in which it would have existed is that which we have described as a state of
lateral disturbance with a hemispherical distribution of density. The excess of
density in one hemisphere and defect in the antipodal hemisphere would have existed
alongside of the concentration of mass towards the centre.

45. In the paper already cited JEANs (1903) struck out the idea that the
distribution of land and water on the surface of the globe is associated with a past
state of gravitational instability. He had found that such instability would manifest
itself in what has been called above a hemispherical distribution of density. When
the square of the irregularity is neglected, the figure of a planet at rest, with such
a distribution of density, is a sphere, but the centre of figure does not coincide with
the centre of gravity. On taking account of the square of the irregularity, JEANs
found that the surface of the planet, still supposed to be at rest, would be such as
can be described roughly as a nearly spherical ellipsoid of revolution, with one half
slightly flattened at the middle, and the other slightly tapered in the antipodal
direction. The figure was described as “ pear-shaped,” the “pear” having a blunt
end, a sharper end, and a waist. The waters of the ocean would presumably collect
in the hollow of the waist, and JEANS pointed out that there is some resemblance of
the shape of the Earth to this figure, although the “stalk” end of the “pear” was
difficult to discover.

In the same year a paper was published by W. J. Sorras,* in which it was
concluded from a discussion of the geographical facts that the shape of the Earth

* «The Figure of the Earth,” ¢ Quart. J. Geol. Soc.,” 59 (1903), p. 180.
VOL. COVIL—A. 2 F '
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resembles that of a “pear”; but SorLras’ and JEANS “pears” have little in common
beyond the name. JeANS ideal distribution would consist of a hemisphere which is
nearly all land, and an antipodal hemisphere which is nearly all ocean, with a central
island in the middle of this ocean. Sorras’ account of the actual distribution is that
in one hemisphere there is a central continent (Africa) nearly surrounded by a belt of
seas, while in the antipodal hemisphere there is a central ocean (the Pacific) nearly
surrounded by a ring of land, the belt and ring being broken at three places, which
are distributed nearly symmetrically around the centres of the two hemispheres.
This description suggests very strongly a mathematical account expressed in terms of
surface harmonics of the third degree.

If we neglect the rotation of the planet, and regard it as at rest under no external
forces, we can reach no other result than that reached by Jraws, viz., that, if the
modulus of compression was once so small that a spherically symmetrical state of
aggregation would have been unstable, the state of the planet would have been one
of lateral disturbance with a hemispherical distribution of density. We should not
be in a position to account at all for the geographical facts as presented by Sorras.

46. The Earth is a rotating globe, and it is now generally believed to be the
larger of two fragments into which a single body has been broken up; the other
fragment is the Moon. In the early history of the Karth-Moon system the two
fragments rotated, nearly as a single rigid body; the period of revolution of the
Moon was nearly the same as the period of rotation of the Farth. We wish to trace
the consequences of supposing that the average elasticity of the material was once
much smaller than it is at present—that the average modulus of compression was
more of the order of that of mercury, or even water, than of that of glass or steel,
and the average rigidity was smaller in comparison with the modulus of compression
than it is to-day. We have the problem of determining the distribution of density
within the planet, and the consequent shape of its surface. The problem cannot be
solved completely, but we can make some progress with it ; and we can then attempt
to discover the extent to which our results accord with geographical observation. In
so far as the accord is good we may regard geography as supporting the hypothesis
as to the past state of the Farth.

Tllustration of the Nature of a Hemuspherical Distribution of Density.

47. We have reason to think that, in the absence of rotation and external forces,
the planet, if’ of sufficiently small elasticity, would have been in the state which we
have described as a state of lateral disturbance with a hemispherical distribution of
density. Before proceeding to take account of the rotation and external attractions,
we consider further the nature of such a disturbance. For this purpose we take the
problem of a spherical body, homogeneous when unstrained, and devoid of all rigidity,
and suppose that in the initial state the self-attraction of the body is balanced by
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hydrostatic pressure. We suppose also that the law of elasticity of the body is that
the increment of pressure is proportional to the increment of density. We show
that equilibrium is possible in strained states, in which the excess of density at any
assigned distance from the centre is proportional to a spherical surface harmonic of
the first degree.

In the initial state the pressure p, and potential V, are given by the formulse

po = 3myps’ (6*—7%), Vo = Fmyp, (3a°—7°).

In the strained state the pressure P, density p, and potential V are expressed by

the formulse -
P=p0+)\§, p=p0(1+§), V=V0+W,

where € denotes the condensation. The equations of equilibrium are

oV P _ OV P oV P _

- =, -9

Py oy 0 P

and W is connected with & by the equation
VW = —Adxmyp,é. |
When terms of the second order in the small quantity ¢ are neglected, the
equations of equilibrium become three equations of the type
poa—g—r -gqrypfxg—xg%: 0; . . . . . . . (108)
and, on eliminating W, and writing s* for $mwyp,’/\, we have

w&w§+w&m...... ... (109)

This equation is satisfied by putting
E=A(1-1%%) e ¥,

where A is an arbitrary constant and w, is a spherical solid harmonic of the first
degree, and this is the most general form of solution in which ¢ is finite at » = 0, and
is proportional when r = const. to a surface harmonic of the first degree. The
additional potential W has the form

W = dmyp, {FAs % ¥ 0+ F},

where F, denotes a spherical solid harmonic of the first degree.
Let the bounding surface become
r = a+ U,
2 F 2
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Since the pressure vanishes at this surface, the expression
Fmype’ {0 — (a4 U, )’} +MA (1=55°0%) e 77 (o, 1)
vanishes, or we have, neglecting U2,
U’ = — (350’ —1) €A (wyfr),

so that U, contains the same surface harmonic as w,. The form of F, is determined
by the condition that W is the potential of a distribution of density p,& through the
volume of the sphere » = a, together with a distribution of density p,U, on its
surface. Just as in § 14, this condition leads to the equation

L = TAs T,
48. Now let the bounding surface in the strained state be

7 = a+bcos 0,

which represents a sphere with its centre at a small distance b from the origin in the
direction of the axis of the harmonic. We find

2,2

$Sr°—D e
E=" = @D cos 0,

s“a”—5

4:7T 152 (2— 72 "
W = —S~———2a2yf"5 (3+e* @) br cos 0.

If s’a® > 5, the condensation is greatest near the centre, and it is positive on the
side remote from that towards which the surface is displaced, so that the centre of
gravity is displaced in the opposite sense to the surface. The distance of the centre
of gravity from the origin is easily proved to be 5b/(s°a*—5).

/\Centre | pe———
S ’\/Axis of Harmonic

Fig. 1.
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The variation of the excess density along the axis of the harmonic is illustrated in
fig. 1. The surface » = a(1+e€cos ) can be an equipotential surface if

ae = —5bj(s*at—5),

and thus a sphere of radius a with its centre at the displaced centre of gravity is an
equipotential surface. The relative situation of the bounding surface and of this
equipotential is illustrated in fig. 2, in which O denotes the undisplaced centre, C the
centre of the displaced surface, and G the centre of gravity of the strained sphere.
The figures are drawn for the case in which s’a® = 10.

The type of disturbance which has been called above a lateral disturbance with a
hemispherical distribution of density would be the same in a body possessing some
degree of rigidity, but the numerical details would be different.

49. If the equipotential surfaces of a nearly spherical body, with a nearly
symmetrical distribution of density, are referred to the centre of gravity of the body
as origin, their equations take such forms as

r = a(1+€2S2+€383+ .-'),

in which e, ... denote small coeflicients, and S,, ... denote spherical surface harmonics
of degrees indicated by the suffixes. There is no term of the form ¢S,. In the case
of the Earth, the coefficients €, ... can be determined by means of pendulum
experiments. If we referred to a different origin, near the centre of gravity, a term
of the form ¢S, would be introduced, but the coefficient ¢, could not be determined by
means of pendulum experiments, for it does not affect the formula for the variation
of gravity over the surface.* If we choose an origin in accordance with geometrical
considerations, e.g., as the centre of that oblate spheroid which most nearly coincides
with the surface of the ocean, the results of pendulum experiments cannot tell us
whether this origin coincides with the centre of gravity or not.

Effect of Rotation upon a Planet with o Hemispherical Dustribution of Density.

50. In all the preceding work the rotation of the Earth has been neglected. We
have now to consider the effect of rotation upon a nearly spherical planet which, in
the absence of rotation, would have a hemispherical distribution of density. To
simplify the analysis, we shall disregard the concentration of mass towards the
centre and also the rigidity of the body. We shall take as the “initial ” state of the -
body a state in which the density is uniform and the stress is hydrostatic pressure,

* The result may be inferred from STOKES investigation of the ¢ Variation of Gravity over the
Surface of the Earth,” Cambridge, ¢ Trans. Phil. Soc.,” 8 (1849), or ¢ Math. and Phys. Papers,” vol. 2,
Cambridge, 1883. It is easy to prove it independently.
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while the body is rotating, as if rigid, about the axis of z with angular velocity o ;
and we shall seek a strained state in which the body could exist without the
application of any external forces, this state being such that, in the absence of
rotation, the distribution of density would be hemispherical. In the notation of § 47
the equations of steady motion of the body are

NV _P ey =,V P, OV 0P
Pow ~ o ”J“”ay oy’ TP T w

o = (110)

The initial state is determined by the same equations with p,, V,, p, substituted for
p, V, P. Now the initial figure is an oblate spheroid, and the initial form of V is

V, = const. —§ {A (& + %)+ C'2*},
where A’ and C’ are constants ; also the initial form of P 1s
Po = const.+p, { Vo+3e” (2" +77)},
= const. —%p, {(A'=o?) (2 +4°)+ /2.
When we write, as in § 47,
p=p(1+&), P=p+r V=V+W,

and neglect terms which cancel on account of the values of p, and V, and
also neglect terms which are of the second order in the small quantity & the
equations (110) become

oW | 0
p0w2ﬂcf = "'PofA/x"‘Po_a—‘ —“)\.ai w
oW .o
—-Powzyf = -‘PofA'y'{'Po ay -\ 5 L . (111)
d
Now we have the equations '
2A'+C" = dayp), VW = —dmwypé,
and therefore we can eliminate W and obtain the equation
Ve <6s2—zw289> £+ o {(A/—wz)( v\ } (112)
A A 73 doy) 0, '

where §* is written for §ayp/\. If w were zero, A’ and C" would both be equal to
$mypy, and we therefore put

A= ayp,+ A7, O = tmyp+C75
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then equation (112) becomes

2 a 2 2 Mo 0 " a a ‘ll a
V"“§+s~r5§+63§=2w%§+%{(A )( ¢ af>+0 z-ag} . (113)

The left-hand member of this equation is the same as that of equation (107) in § 47
above ; and therefore, when «” is neglected, & can be of the form &, where

fl - A. (]. “"’]5*827'2) e—%smwl,

the notation being the same as in § 48. Now we shall suppose that ®is not large,
so that we may treat & as an approximation to & and substitute & for € in the
right-hand member of equation (113), for all the terms of this member are small of
the order w’(. We are then neglecting &% but not «’¢. To obtain a second
approximation, we put

§=&+¢,

and seek a particular integral of the equation
v yose = s b {026 4 PE) s BE) G

There would be no special difficulty in obtaining a solution of the equation, but it
will be sufficient for our purpose to find the form of the solution. The function &
may be expressed in terms of polar co-ordinates », #, ¢ in the form

= f(r) 7 (a, sin @ cos ¢+ B, sin @ sin ¢+, cos 0),

where a;, B, y1 are constants, and f(r) is a certain function of » which has been
determined. Hence we have

gil +y_a_§_1 = 7f(r)(a, sin § cos ¢+ B3, sin @ sin ¢)
+72f" () sin® 0 (a, sin 0 cos ¢+ B, sin 0 sin ¢+, cos 6),
z%% = 7f(r) y, cos 6+7"2f’ () cos® O (@, sin 4 cos ¢+ B, sin @ sin ¢+ y, cos 0) ;
and these can be expréssed in the forms
o3y 26— () H40f" () sin (o cos 6 )+ 307 (1), cos
—22f7 () (cos® 0—%) sin (e, cos ¢+ B sin ¢) —r*f' () y1 (cos® —2 cos 0),

z%gl = 1f"(r) sin 0 (¢, cos ¢+ B, sin @)+ { f(r) +3f’ ()} y1 cos §
+72f7(r) sin 6 (cos® 0—%) (a; cos ¢+ B, sin @) +72f"(r) y, (cos® 6—2 cos )

Hence the right-hand member of (114) can be expressed as a sum of terms each of
which is the product of a function of + and a spherical surface harmonic, and the
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surface harmonics which occur are those of the first degree and the following
harmonics of the third degree :—

cos® 0—% cos 0, (cos®—1)sin @ cosp, (cos® @—1%)sin @ sin ¢.

To each of these terms there corresponds a term of the same form in ¢, and
therefore also in P, or p,+A€; and it follows that the displacement of the bounding
surface from its initial form (which is a slightly elliptic oblate spheroid appropriate to
the rotation) is expressed by a radial displacement, which consists of a part propor-
tional to a spherical surface harmonic of the first degree, together with parts propor-
tional to the above surface harmonics of the third degree. In like manner all the
terms of the additional potential W are the products of functions of » and surface
harmonics, which are either of the first degree or are the above harmonics of the
third degree ; but the coeflicients of the various harmonics in W are different from
their coefficients in £ The equation of the equipotentials under gravity, modified by
the rotation, is

Vot+ Wie® (2®+9°) = const., or py/po+ W = const. ;

and thus the situation of the bounding surface relative to the equipotentials is
expressed by a difference of radii at corresponding points, this difference being a sum
of terms of the form 0S, where b denotes a constant and S denotes a surface
harmonic; and the surface harmonics which can occur are those of the first degree
and the three of the third degree written above.

51. It appears from this investigation that, if a gravitating body, which is rotating
about an axis, has so small a modulus of compression that, if the body were at rest, a
spherically symmetrical distribution of density would be unstable, it would tend to take
up a state in which the distribution of density would not be exactly hemispherical,
but the excess density would also contain terms expressed by spherical harmonies of
the third degree. The figure of the body would differ from the oblate spheroidal
figure appropriate to the rotation by a radial displacement at each point ; and this
displacement would be expressed partly by spherical surface harmonics of the first
degree, indicating that the centre of gravity does not coincide with the centre of
figure, and partly by spherical harmonics of the third degree. If the body were
entirely devoid of rigidity, the oblate figure appropriate to the rotation would be the
same as that of an equipotential surface under gravity, modified by the rotation ; and
the figure of the body, as determined by difference of level above or below a certain
equipotential surface, would be an harmonic spherod of the third degree, and the
situation of the body would be that of such a spheroid when displaced towards one
side. If the body possessed some rigidity, the oblate figure appropriate to the
rotation would differ a little from that of a nearly coincident equipotential surface,
and the shape of it, determined as before, would be that derived from a certain oblate
spheroid of small ellipticity by a displacement proportional to a surface harmonic of
the third degree. The surface harmonic would be of a somewhat specialised type.
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Effect of certawn External Forces.

52. The effect of forces such as the attraction of the Moon at the time when its
period of orbital revolution did not differ much from the period of rotation of the
Earth would be to draw the planet out into a shape more nearly ellipsoidal, with
three unequal axes, than spheroidal. If the planet could have had a symmetrical
shape it would have been practically ellipsoidal, and the surfaces of equal density
would have been ellipsoids. Whereas the effect of rotation is the same as that of
forces derived from a potential of the second degree, symmetrical about the axis of
rotation ; such forces as we are now considering are derived from a potential, the
most important terms of which would be of the second degree, but not symmetrical
about the axis of rotation. If the elasticity was too small for an ellipsoidal figure to
be stable, the planet would have been in a disturbed state, the nature of which can
be inferred from the preceding investigation. We have only to replace in § 50 the
initial potential, modified by the rotation, by a general expression of the second degree
in the co-ordinates. The only change that would be made in the result would be that
those terms in the radial displacement which are expressed by harmonics of the third
degree would not be of the specialised type introduced by the rotation, but would be
of general type. The figure of the planet would be derived from the ellipsoidal
figure appropriate to the rotation, and to the external forces, by a radial inequality
expressed by surface harmonics of the first and third degrees. The equipotential
surfaces would be obtained from the ellipsoidal equipotentials appropriate to gravity,
modified by the rotation and the external forces, by surface harmonics of the same
degrees. The result would be that the shape of the planet, as determined by
difference of level above or below a certain equipotential, would be a wrinkled
ellipsoid, displaced towards one side; and the wrinkle would be expressible by means
of a spherical surface harmonic of the third degree.

The Problem of the Shape of the Lithosphere.

53. The problem of determining the form of the equipotentials near the surface of
the Earth includes the problem of determining the figure of the surface of the
ocean (the “hydrosphere”). The equipotentials which lie outside the nucleus (or
“lithosphere”) on one side, and sufficiently near to it, cut the surface of the
lithosphere towards the other side. Among these equipotential surfaces that one
which, outside the lithosphere, coincides with the surface of the ocean is known as
the “ geoid.” The surface of that part of the lithosphere which lies outside the geoid
is occupied by land, and can be observed directly ; the surface of that part which lies
within the geoid can only be observed indirectly by means of soundings. We have
no means of investigating the form of the surface of this part of the lithosphere
except by estimating its depth at a point below the geoid. The most important
deviations from sphericity both of the lithosphere and of the geoid are of such

VOL. CCVIL—A, 2 6
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a nature that these surfaces are nearly oblate spheroids. If the lithosphere were
exactly in the form of an oblate spheroid, and its centre of gravity coincided with its
centre of figure, it would either lie entirely within the geoid or would protrude from
it symmetrically at the North and South Poles. Owing to the rigidity of the
lithosphere the ellipticity produced in the geoid by rotation would be slightly greater
than that produced in the lithosphere, and thus there is a tendency to lay bare the
polar regions ; but, since the land of the globe does not consist of two circular islands
at the poles, there are other deviations from sphericity, both of lithosphere and geoid,
and the relative amounts of these at different places can be expressed by the difference
of radii drawn from the centre of gravity. According to the theory which has been
here advanced this difference of radii should be, at least in its general features,
expressible as a sum of spherical harmonics of the first, second and third degrees.

54. It is easy to verify the presence of some of these harmonics. The effect of
a term of the first degree would be to make the lithosphere protrude from the geoid
towards one side. If this term were the only one, the land of the globe would form
a circular island or continent. It is the fact that most of the land is in one
hemisphere. The great circle of the globe which contains most land has a pole
situated between Orléans and Le Mans® (latitude 48° N., longitude 30" E.). Again,
the zonal harmonic of the third degree vanishes at three circles, one being a great
circle. If this term were the only one, the land of the globe would consist of
a circular island surrounded by a belt of ocean in one hemisphere, and in the
antipodal hemisphere there would be a circular ocean surrounded by a ring of land.
This arrangement corresponds to two features of Sorras’ description of the FHarth’s
surface. The nearly symmetrical breaking at three places of the belt and three of
the ring, which he also noticed, indicates the presence of the sectorial harmonic of the
third degree. If we refer to the polar axis, instead of any other morphological axis,
the presence of the zonal harmonic of the third degree is indicated by the existence
of an Antarctic continent, and by the fact that most of the land of the globe is north
of the Equator. The harmonic of the third degree and second rank, referred to the
polar axis, vanishes at the Equator and at four meridians symmetrically placed. If
this term were the only one, then, in two northern quadrants there would be land,
and also in the two alternate southern quadrants, an arrangement which suggests
Central Asia and North America as the land quadrants of the northern hemisphere,
Australia and South America as those of the southern.

Spherical Harmonic Analyses of the Distribution of Land and Water.

55. By such arguments as the foregoing, and by some trials with small numerical
coefficients for the various harmonics, T had convinced myself that many features of
the distribution of land and water could be represented by means of harmonics of the
third degree, when Professor H. H. TUurNER suggested to me the advisability of

* F, BRUCKNER, ¢Die feste Trdrinde und ihre Formen,” Wien, 1897.
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adopting a systematic process for the discovery of appropriate coefficients. He very
kindly made, and placed at my disposal, a rough preliminary calculation, and the
results were sufliciently encouraging to warrant the undertaking of a considerable
piece of computation. A professional computer was employed for a time, but
eventually I relied upon my own calculations, taking many precautions to ensure
accuracy. The systematic process consists in devising a function to represent the
“value of land” at any point, and determining, by the method of approximate
quadrature, the coefficients of an expansion of the function in spherical harmonics.
The results of such a computation clearly depend upon the chosen ¢wvalue of land,”
and judgment must be exercised in selecting appropriate values. Little importance
can be attached to the heights of mountains, because the highest mountain ranges
are, geologically speaking, modern, the ancient mountains being worn down by
denudation and erosion. Too much importance is not to be attributed to the actual
coast-line, because this line is subject to many causes of change. The coast-line is
but one of the contour-lines of the continental block (the geoid being the level of
reckoning), and the shape of the block at considerable depths differs a good deal from
that at the surface. At mean-sphere-level (8400 feet below sea-level) the continents,
with the exception of the Antarctic continent, form a continuous block.* The Arctic
Ocean is reduced, so far as is known, to a trough running nearly along the meridian
of Greenwich, from about latitude 65° N. to about latitude 80° N. It may extend to
the North Pole and surround it. The polar block spreads southwards in two great
masses—America and Eurasia. These are joined through the British Isles, Iceland
and Greenland on the one side, and across Behring’s Strait on the other ; the contour-
line at mean-sphere-level runs practically along the 60th parallel between America
and Europe and along the 50th parallel between America and Asia. The Eurasian
division of the block forks near the Persian Gulf, and tapers southwards in two
branches, one containing Africa and the other the Malay Peninsula, adjacent islands,
Australia and New Zealand. The Red Sea does not go down to mean-sphere-level, and
the Mediterranean does so only in two small patches. The American division of the
block is continuous across the Gulf of Mexico, the West Indies and the Caribbean
Sea, which, at this depth, equally with Mexico, Central America, and the Isthmus of
Panama, form part of the ridge joining North and South America. The ridge has
some local depressions. The block tapers towards Cape Horn, in the neighbourhood
of which, however, it has a great eastward extension, and this extension turns
westward and nearly joins the northern continental block to the Antarctic continental
block through the South Shetland Islands.f The Antarctic block also shows a

* The information here detailed in regard to the distribution of the continental blocks and oceanic
regions at mean-sphere-level is taken from a map drawn by H. R. MILL in ¢ The Scottish Geographical
Magazine’ (Edinburgh), vol. 6 (1890), p. 184. Reference may be made to the rough map on p. 237 below.

t It is now known that the depth of the channel is not so great as it was for a long time supposed to be.
See a paper by W. 8. BRUCE in  The Scottish Geographical Magazine’ (Edinburgh), vol. 21 (1905), p. 402.

2 ¢ 2
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northward extension towards Australasia. The contour-line of the continental blocks
at mean-sphere-level is a very important and fairly well ascertained datum of the
problem. If, however, we attend exclusively to it, we are liable to emphasise unduly
those parts of the block which do not rise above the level of the sea.

56. I calculated the coeflicients of a spherical harmonic expansion up to harmonics
of the third degree for two different assumptions as to the “value of land.”  In the
first assumption the value —1 was attached to those points of the surface which are
below mean-sphere-level and the value 0 to those points which are above it. In
the second assumption the value 1 was attached to those points of the surface which
are above sea-level and the value 0 to those below it. The coefficients obtained by
the two assumptions were then added. The somewhat greater importance of the
mean sphere may perhaps be sufficiently represented by the result that the maxima
obtained by using the first set of coefficients are larger than those obtained by using
the second set. The combined distribution for the two sets of coefficients is shown in
the following table, in which 6 stands for co-latitude measured from the North Pole,
and ¢ for longitude measured eastwards from the meridian of Greenwich :—


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

229

GRAVITATIONAL STABILITY OF THE EARTH.

TABLE.

ND T R B B B e B B B B B B e B B ] vy Pt oy g ey e ] oy = ] R B o B |
@« | P | I
[ ol o
.
<o T i oy p e ] o = = ] = ] R B R B B B e B e B e B B o B e B | i r—{ r—{
[0} s
i T T T T O T O O T B
.-
10 T R i B B e B B B e B B B Ty ey ped = = ] e r—{ Lo IR T oo |
- i
i T A R R S R A O
. .
. i
° H
o i = = = = =~ ] P R B B B B B e B B e B e B e B e B ] = - |
-~ ! [ T T T T [ |
! [ Fo
Oo .
10 — P IR e B e B B e R B e B e R e B B e B e B o B e B B e B R e B e B e R e B e B o B i e B e | T = =
2 -
I T O T T T O O T O O O
00 kam! P B B B B e B e B e B e B | R B R B B e B B B e B e B B e B e B o R o B | i = -
©
I T T T O Y T O O O A B
mhu i = = = = = — r— R e B B B e T e B TR e B e B o B e B o B B o | i -
0 I T T N N I
MU T = = r—{ r—{ — r— T y—{ ! y—{ i = = = = — - i —
s | I 1 N
[ | I
MO it =i = =y ] o = = kam! R B B e B B B B e B B e | T
= 1 [T T T B I
oO kam! i oy — r— == = — R IR e B B e R e B e | i
~ i 1 T T O
whu kam! ! = r—{ r—{ r—i P R IR e B B B B B ] == - 1
o I : (I T T B
-
[e») — ey oy = = = = = = = =~ — ] R B o B s BB o B e ] ™
e« | [
mD kam! vy oy ]y p—{ R e IR IR B e R e B e B e B e B R e B e B | = = = r—{ L}
a1 [ [
oO Ram| = = - R B B B I e B B B e B N e B B e B B o B o B B e B -
& | [ T B
WD Ram| 111111 R e U e B e B e B e B e B R e B e B e B o | i = = = = R
~— | N T T T T :
00 — = D B e B e B e B o B s B e B e B e B o = = = = = i —
T
! N T S T |
m.o‘ i o = = -l R i B R B B B e B e B o | i
! (T R T Y B
N i o = = — = R I e I I | P e o I I I B IR e e B e B B e B —
()
[ (T T T T O T O (O O O
,m,\ s OOV OVOWVWOWVOVOVOVONDWIOVOIWV OV OW
> —rENNMMAH NI OO~V VI OO == ENMMN<HHIOID © O -~
\ P e i B B B B B e R e B e B e B e B e B e B o

ALATIOOS

40 ALIIDOS
WV vicn 210, Shouovsava V-

40

SNOILDVSNVYL

VYAOY dH.L 1vDIHJOSOTIHd


http://rsta.royalsocietypublishing.org/

E. H. LOVE ON THE

PROFESSOR A.

Downloaded from rsta.royalsocietypublishing.org

230

o
Wm - ] 1111111111111111 i —t o r—t — —
— ! T T T T T T N T B B B P
o |
m t — T i 111111111111111 — = - ]
— | I T T T T T T Y B O B o
-
nvw — r— ot i e e = T =4 el = e = — b B B | — e ]
— 1 [T T T Y T R S O B N (. [
o
— I ! [T T T T T N A S Y B O [T T T T T O
o
: — | T T T T T N IO S B | I
i
m i i y—] —t et = ] = = e — o= - D e B B0 s TR e e S e B s B
— i F T T S O O B N I
o
% = 1 — oy peed oyl = ] e e R e e B e B o B e D e B e R e B e B o R e B
— ! [T T T T T T It
=
m i — — pod rd e ped e ped T —t = ) — et e
Puy — " i (I I T A
2 o | :
g — | [ P I
= .
n o
) — | P Eororon
jca] o *
5 e
L wa — e i SR B e B B B ] p—) ] ] e e g e g e ey
& — i I
<
et o
m 4 - i e g el ped e{ e e ] ] i e s B e B s S e B s BB o S B e
— , i Lo
~
— i [ | [
-
— [ Pl I
-
i % =t et ped g pd ped e ;e gl et e i i — o e el e oy et r e = e e e e
| — | T T T O T T A
.
= | T T T T S A N T
0 * i
He) i L} ol ped peed = p={ Tt = e e = Pl B i B e B B o B o B e B s B —t o
@ | T T T T T T O O
o " i i
> 1 Z T T T T T R T SO B B
\ |
o
(l\ | 50..00505050505050~)..050~00~00K;0~005050505
S 11223344F0566778899001]20&3344»056677
\ oyt el e ped 7 2 ¥t ) =) ] = i
|
S3ION3IDS 10 S3ION3IDS
O ETe)
DNIY33INIDONT B b%rﬁlm H U m DNIY3INIONT B >r~lm—ﬂuom

SNOILDVSNVYL

SNOLLOVSNVAL
A TVAOY dH.L 1vDIHIOSOT1IHd

J<u_bu<«w_xm?:& TVAOY AH.L 1vDIHdOSO1IHd “IVDILYWIHLYW



http://rsta.royalsocietypublishing.org/

231

GRAVITATIONAL STABILITY OF THE EARTI.

Downloaded from rsta.royalsocietypublishing.org

{ o ° ﬁ
m Ww — R B B B e B e B e B e B e B e B e | e e B e B e B e B e B e B B e B e B e B B e R e B B ] = -
& i [ T T Y O A O B IR
Ua i
m A Lo} L IR B B e B e R e B e IR e B e B e B e B ) rd e e e~ o  ~ — — — — — =
& ! N A
e P
S | ! N T T R T T R O A O
o
Arw = o o o o~ o — o o o~ o e ] i
2 | [ T T T R O O B B O
o
& I T T T T O T T O
-
@ —t o B e B e B e B e B e B e B o e = =~ = e = — i =
& I L T T T R O B B
-
“;mw. — = b B IR B e B B e B B e B e B e B e IR e R B e B B e B e B e I | =
] I [ N A R
-
% — R B B e B Laut iR e B B e B B e B e B e B e B e B et B e B e B R e B B IR e B o B ] —
] ! i T R T N N T T T O T T SN SO SO T B
=
o o ”
Duu r«Mm — = R B e B e B o R s B s S s R B s S TR s B e R e T B e B e TR s B B e B e R e | i
= & I L e e O O O
o
-2 -
.
n % i = - b e e B e B e B e B e B e B e B e B e B e B e iR e e B e B e B e B B e R e B e B | — =
3 & I [ T T T T T T O O O OO B
(]
S~ .
o
m w ™ re r e e e e A e A e e e e e e e o e =
I~ =~ ! T T T T T (e O U S O A T T R A
< :
. .
= I T T T T O T T O (N A O
, o ”
", Q | I T T T O Y O T O O
; o
H m i i A A A A A A A A A A~ o~~~ i ]
| & ! (T T T T U O Y T N N O B B
”_ o
i — I [ T T T T T T (O O S O T Y O T
| .
_ .
M = I T T T T T O O O A T A
! N
| - I T T T T T T T O T T O A I I
,, :
v o
_ mv — i bR I e B B e B e B e B e B e B e B e B e B e B e B e B e B ] o~~~ =
| ~ I T T T T T T T (O IO B A I Fro
! )z
i
‘ 1@:\ 6 MM OO WO DI NOINDIOWVOVODWVWOWODINDIDDINDIH DI DI
] > HrE AN HHINI OOV OO I MMN <FHIDIO © O I=rI-

ALIIDOS 1o s ALIIDOS 10
@?ﬁom SHLL ol @N TR0 AL oo Ty


http://rsta.royalsocietypublishing.org/

O LOVE ON THE

L.

Downloaded from rsta.royalsocietypublishing.org
PROFESSOR A.

232

.-
w% — o e o e e et e —
e i | e A
-
=3 — i ey P L e e B e IR IR B B e B B e B s IR B e B e B | b
o)
) | | Y T A R N I O
-
2 — — o — — et e e = — —
3r} [ | | S N A R e
-
m i o~ e I B IR IR B IR e IR B e B e B e B e B e B e B e | i
o ! I O T B B I e e
-
% — o et e e e e e e — —
™ ! e e
I
: % s et el P et = e e e = ——
i o | I T T N S A O S e S N N
| N
; % et d ] — e ot e e = e o e e —
5] | [ T A T N N S R A A A A N
o
% — =t et e e — e = —
N o | | N R A S (N N NS A A A | N T T A O N A
ze] 0"
m w e g yeeed oy ] Ean e e B e B B B B B e B B | = = = R B B e B e = = = = i
b e i . [ T R T A S T | I T [
.
~+ o "
m = — o — o o o et e — = i
S o | [ [ N A S N S B [ [
S—
R - e A A A A A e e o )t
= =
o] 3] | N T T NS N bl !
< m — o~ — o~ — o e — —r
58] | | I S B B |
-
2 — — e — — e et e et — —
] | | | !
-
% — — - — et = e et e et el e = P —
& ! (. |
.-
WO). — et —t ot — — — =
[N | |
-
% — — — — ot — o
o] | [ R B !
-
% — — R E i ha Rl R Bl R B e R R
&3 ! [
° |
m : — — ot e e e e e peed pd pd 7 e e
[ f | | N A
|
- 7
(\ _ b MO WVOWVWOODIRONVODWVOWVOWOWVWOWVODWOWVWDIR O OO
> rr= N MM AR DN OO OO MM HHIID O O -~
\ | e e B I B R R e R e I R e R R |
1

ALIID0S mZO_._.WNmZ<~_._. NITNIONS

1% ALIIOOS S
V TVAOY THL IVDIHOSOTIHY el

TR NONL AL S s



http://rsta.royalsocietypublishing.org/

i \
I \

a
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

GRAVITATIONAL STABILITY OF THE EARTH. 233

57. The surface harmonics of the first degree expressed in ordinary spherical polar

co-ordinates 0, ¢ are . . .
X sin 0 cos ¢, sin fsin¢, cosb;

and any spherical surface harmonic of the first degree can be expressed in the form
(pcosd+gsin$)sinf+rcosd, . . . . . . (115)

where p, ¢, » are numbers. The spherical surface harmonics of the second degree

are* sin 26 cos ¢, sin 20 sin ¢, sin® 0 cos 2¢, sin® fsin 24, 3 cos 20+1;

and any spherical surface harmonic of the second degree can be expressed in the form

(o cos p+ B sin @) sin 20+ (y cos 2+ 8 sin 2¢) sin® O+€ (3 cos 20+1). . (116)

The spherical surface harmonics of the third degree are

(i.) The zonal harmonic 5 cos® —3 cos 0;

(i) The tesseral harmonics of the first rank
(5cos*@—1)sin B cos dp, (5 cos®@—1)sinfsin p;
(iii.) The tesseral harmonics of the second rank

sin® @ cos 0 cos 2¢p, sin® 0 cos 0 sin 2¢ ;

(iv.) The sectorial harmonies

sin® 0 cos 3¢, sin® 0 sin 3¢,
Since ‘
5 cos® 0—38 cos § = § (cos 30+% cos 6),

(5 cos® @—1) sin @ = % (sin 6+ 5 sin 36),
sin® @ cos 0 = % (cos 00— cos 36),
sin® @ = % (3 sin 0 sin 36),
any spherical surface harmonic of the third degree can be expressed in the form
aW +X (b cos ¢p-+csin @) +Y(d cos 2h+e sin 2¢) +Z( f cos 3p+¢ sin 3¢), . (117)
where o, b, ¢, d, e, f, g are numbers, and
W = cos 30+ (06) cos 6, ]‘
X = sin #+5 sin 36, [

Y = cos f— cos 36,
Z = 3 sin #— sin 36. J

Lo (1)

* The form 3 cos 20+ 1 for the zonal harmonic is 4 (2 cos? 0 - ), and is taken as being more convenient
for calculation.

VOL. CCVIL—A., ) 2 H
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58. Let F (0, ¢) denote the function to be expanded. The coefficients are expressed
by equations of the type

pﬁﬂ d‘#’j: df(cos ¢ sin f)* sin 6 = ﬁ" d‘f’j: dOF (0, ¢)(cos ¢ sin ) sin 0. . (119)

The factors multiplying the coeflicients p, &c. in the left-hand members are the
integrals of the squares of the several harmonics over the surface of a unit sphere.
The integrals in the right-hand members are the integrals, over the surface of the
same sphere, of the product of the function to be expanded and the corresponding
harmonics. The values of the integrated squares multiplying p, &e., are recorded in
the following table :—

Coefficient. Value ;)éu;r;?grated Reciprocals.
hor v () % Sem™? R
a, f3, 7y 8 T (48) x 251
) Eu () % 5m
a T (5) >< _ﬂ—l -
be i (0°3) x Bfm L
d, e Toem (3) x Pt
V¥ S (0°5) x f5m1

Since the ratios only are relevant, the integrals in the right-hand members of such
equations as (119) are to be multiplied by the numbers in brackets in the third

column.
59. To evaluate integrals of the type in the right-hand member of (119), when the

value of F (6, ¢) is given by the table of §56, or any similar table, we treat the

integral as a double sum, e.g.,
m=T71 ar 71:35< T > F<nﬂ- m7T> ’ mr . 7’L7T> . '
2 <§é> 256" 56 36 (COS 36 "6/ M 36
then we have to evaluate such a double sum as

71 35

nmwT mm mmw . o NiT
5 2 F (— ——> cos —- sin? o,
m=0 n=1 \36’ 36

/
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We sum first with respect to m ; but in forming the sum we take account of the
fact that sin®(nw/36) does not change when n is replaced by 36—n. For example,
let T be equal to 1 at the points indicated in the table, and zero at other points.
Then the contribution to the terms containing any m of the two parallels given by n
and 36—n is either 0, 1, or 2, according as a 1 occurs on neither parallel (for the
particular m in question), on one, or on both. This number 0, 1, or 2 is to be
multiplied by the value of cos (mm[36) for the chosen m ; but the same value for the
cosine occurs at the meridian given by 72—m, and the same numerical value with the
opposite sign occurs at the meridians given by 36 —m and 36+m. We condense into
one term the contributions of the eight points given by n, 36 —n, m, 72—m, 36 4 m,
and take the ranges of m and n to be respectively 0 to 17 and 1 to 18. Thus, as the
multiplier of cos (mm[36) sin® (nm[36), we have an integral number which necessarily
lies between —4 and 4, and may be zero, and we have transformed the sum into a
double sum of the form

17 18

mm . oM
S S F/(n, m) cos sin? —
m=0 n=1 ( ’ ) 36 36 ’

where T is the number in question. The most troublesome part of the process is the
determination of F'.  When F’ has been found it is very easy to form the sum of
such a series as that written immediately above by summing first with respect to m
and then with respect to n. When we are dealing with tesseral harmonics of the
second rank, we can thus condense into one term the contributions of 16 points of
the table, and, when the tesseral harmonic is of the third rank, those of 24 points.
Much labour is saved by going through this process, troublesome though it is, and
much greater accuracy can be secured, because in the multiplication of cos (mm/36)
by F/, when F' is, say, 5 or 6, and the value of the cosine to any chosen number
of decimal places is used, it is easier to correct the figure in the last place than it is
when the same cosine occurs five or six times in a long column of figures which have
to be added together.

60. By the use of this method I computed the values of the coefficients p, &c., for
the function F (6, ¢) which is given by the —1’s in the table of § 56, the 1’s being
replaced by zeros. Up to the stage of summation with respect to m, inclusive, I kept
four decimal figures. Of the terms of the type

g <F' (n, m) cos —m—”> Csin? 7
m=0 36

I then kept two decimal figures, formed the sums with respect to 7, and multiplied
them by the corresponding numbers placed in brackets in the third column of the
table in § 58. This process gave the coefficients in the second column of the annexed
table. The integral parts only were retained. I computed the values of the
coefficients p, &c., in the same way for the function given by the 1’s in the table of
§ 56, the —1’s being replaced by zero. This process gave the coefficients in the third

2 H2
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'and (7/36)* have been omitted.

It is to be understood that in both cases the common

256
I F0¢)=0o0r -1 ¥, ¢)=1o0r0. Sum.
P 604 557 1161
7 495 329 824
T i 630 - 1407
o 350 243 593
B 295 366 661
v - 443 - 223 - 666
8 - 291 68 -223
€ 185 98 283
' a -213 -134 - 347
b - 73 ‘ - 71 - 144
c - 29 38 9
d - 338 - 256 - 594
e 396 351 747
f - ﬁ56 26 82
g 203 122 325

The Continental Blocks and Oceanic Regions as expressed by Spherical Hormonics
of the Furst, Second and Third Degrees. '

61. I then computed the values of the harmonics expressed by (115), (116), (117),
for values of ¢ and ¢, which are multiples of 15° (or %), using first the coeflicients



http://rsta.royalsocietypublishing.org/

a
i\
A

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

/s \
JA \
Y o

S

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

GRAVITATIONAL STABILITY OF THE EARTH. 237

given in the second column of the table in § 60, and then the coefficients which are
given in the third column of the same table. Finally I added the values belonging
to the same ¢ and ¢. The results are shown in the diagram (fig. 3), where the fine
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continuous line is the contour-line along which the calculated harmonic inequality
vanishes, the heavy continuous line is the contour-line along which this inequality is
10 per cent. of its maximum below zero, and the dotted line is the contour-line along
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which this inequality is 10 per cent. of its maximum above zero. It is to be observed
that an inequality expressed by harmonics of uneven degrees has numerically equal
values with opposite signs at antipodal points, and therefore the area on the sphere
within which such an inequality is positive is equal to the area within which it is
negative. But this equality of positive and negative areas does not hold when the
harmonics of the second degree are present. A rough calculation showed that the
zero line of the inequality illustrated in fig. 3 divides the surface of the sphere into
two unequal areas, and the inequality is negative in the larger area. The excess of
the negative area above the positive is nearly 10 per cent. of the whole surface.
The heavy line in fig. 38 corresponds more mnearly than the other lines to the
principle by which geographers construct the contour-line at mean-sphere-level. The
diagram in fig. 3 suggests many features of the outline of the continental block, and
there can be no doubt that the coefficients could be adjusted so as to secure a better
agreement.® It seems best, however, to record the results as they are. For the sake
of comparison a rough map of the world is added (fig. 4). The heavy continuous line
is the outline of the continental block at mean-sphere-level, and the fine continuous
line is the coast-line. I have not attempted to draw the map with minute accuracy,
and have omitted many small islands and some small enclosed patches of deep sea,
because the object aimed at is a comparison of the general features of the map of
the world with those of the diagram in fig. 3. The map is drawn by taking the
longitude east of Greenwich and the latitude of any point as the Cartesian
co-ordinates of the corresponding point of the map. Fig. 3 is drawn in the same way.

The defects of the arrangement in fig. 3, considered as representing the shape of
the continental block, are sufficiently obvious, the chief being the absence of any
indication of an Arctic ocean, and the almost complete submersion of South America.
On the other hand, the fact that even tolerable agreement in so many respects is
obtained from a spherical harmonic analysis of the extremely simple distribution
detailed in the table of § 56 may be regarded as a confirmation of the theory which
led us to assume that harmonies of the first, second, and third degrees should be
predominant.

Geological Implications of the Theory.

62. The results appear to admit of a geological interpretation. We have adduced
dynamical reasons for the hypothesis that the lithosphere consolidated in a shape
which may be described as an ellipsoid with three unequal axes, with its centre
of gravity displaced from its centre of figure, and with a wrinkle upon its surface
expressed by spherical surface harmonics of the third degree ; and we have found that
the figure of the lithosphere now, as determined by difference of level above or below

* The coefficients 7, ¢, a, b, ¢ are especially sensitive to changes in the assumed distribution in the Arctic
and Antarctic regions where the actual distribution is least known,


http://rsta.royalsocietypublishing.org/

N

a
-
I ¥
y & ) ©

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

GRAVITATIONAL STABILITY OF THE EARTH. 239

the geoid, is expressible, at least roughly and approximately, by means of harmonics
of the first, second, and third degrees. Now, if the shape of the lithosphere is at all
close to that in which it may be presumed to have consolidated, the inference would
seem to be that, in respect of general features, as distinguished from local irregularities,
the positions of the continental blocks and oceanic regions have not changed much
since the date of consolidation. This view has in recent times met with considerable
support among geologists.

The theory also enables us to make some attempt to indicate the general nature
of those changes which could be expected to take place. In estimating the value of
such an attempt some allowance must be made for the fact that the theory of an
elastic body in a state of initial stress is very far from complete. We try to follow
out certain clues drawn from the scanty knowledge we possess of bodies in states of
mnitial stress. Among these the behaviour of cast iron under tensile tests is perhaps
important. It is well known that cast iron which has not previously been tested
exhibits a stress-strain curve which is essentially different from that of mild steel, but
that, after several tests, its behaviour approaches to that of steel. It has been
conjectured that the tests have the effect of gradually removing a state of initial
stress, and thus reducing the substance to a “ state of ease.” That state of a rotating
gravitating planet which would correspond to a state of ease in solid bodies at its
surface would seem to be a state in which the material would be arranged in
concentric spheroidal layers of equal density, and the external surface would be an
oblate spheroid, the ellipticity being determined by the speed of rotation and the
distribution of density ; the state of stress in the planet, when in this state of ease,
would be one of hydrostatic pressure, and the surface would be an equipotential
surface under gravity modified by the rotation. The partial reduction of the body to
the state of ease would be effected by gradual stages, probably of the nature of local
fractures. Now the wrinkling of the surface, expressed by harmonics of the third
degree, arose as a consequence of the displacement of the centre of gravity and of the
ellipsoidal configuration. It would at first be small in comparison with the deviations
from spherical symmetry which are expressed by harmonics of the first and second
degrees. We should therefore expect that the tendency of secular change in the
shape of the lithosphere would be to diminish the coeflicients of the harmonics of the
first and second degrees. An exception must be made in the case of the coefficient e
of the zonal harmonic of the second degree ; for this coefficient represents a difference
of ellipticity of the meridians of lithosphere and geoid, and these ellipticities depend
upon the speed of rotation. When this coeflicient is left out of account, the harmonic
inequality of the second degree represents ellipticity of the equator® and obliquity
of the principal planes; the harmonic inequality of the first degree represents
displacement of the centre of gravity from the centre of figure. If the coefficients of

% (. IL DARWIN concluded from his theory of the tidal deformation of a viscous spheroid that an initial
ellipticity of the equator would tend to be obliterated. ¢ Phil. Trans. Roy. Soc.,” vol. 170 (1879), p. 30.
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the harmonics of the first degree have ratios anywhere near to those given in the
table of § 60, the great circle along which the harmonic inequality of the first degree
vanishes has a pole somewhere in south-eastern Europe and the opposite pole in the
Pacific Ocean. The inequality is positive in FEurope, most of Asia, Africa, North
America, the northern and central parts of the Atlantic Ocean, and the Arctic
regions. The effect of a gradual diminution of the coefficients of the harmonics of
the first degree would be a gradual emptying of the Pacific Ocean, accompanied
by a rise of sea-level around the shores of the Atlantic Ocean (except towards
the southérn parts of Africa and South America) and around the northern and
western parts of the Indian Ocean. It has been held that such an effect has
taken place and constitutes the reason for the difference between a  Pacific coast ”
and an “ Atlantic coast.”* The ratios of the coeflicients of the various harmonics
of the second degree for the two distributions considered in §§ 56-60 are widely
divergent, but they agree in leading to negative values for the harmonic inequality
of the second degree in the regions contained within oval curves which lie within
the basin of the Pacific, and also in the antipodal regions. In a large part of the
Pacific region the harmonics of the first and second degrees reinforce each other ;
in the antipodal region they are antagonistic. ~Diminution of the coefficients of
the harmonics of the second degree would be manifested by a fall of sea-level in
the Pacific, and also in a region antipodal to some part of the Pacific. It may not,
perhaps, be altogether fanciful to see in the gradual reduction of area of the *“ Central
Mediterranean Sea” of Mesozoic and Tertiary timest the effect of a continual
reduction of those coefficients of harmonic inequalities of the second degree which
represent ellipticity of the equator and obliquity of the principal planes. Whether
these conjectures as to the particular regions which may have been affected are
acceptable or not, it can safely be said that the effects of changes in the harmonic
inequality of the first degree, and in those of the second degree which we are now
considering, would be progressive in the same sense at the same place. They would
be manifested in a tendency of the sea to fall in certain regions and to rise in certain
complementary regions and gradually to flood wide areas. The gradual character
of the positive movements of the strand-line, by which wide areas have been sub-
merged, has been emphasized by Sugss. |

The surface of the lithosphere is nearly an oblate spheroid which does not coincide
precisely with an equipotential under gravity modified by the rotation; it is less
oblate than the geoid. The surface of a shallow ocean covering an oblate spheroidal
planet, whose outer surface is not exactly an equipotential surface, is an oblate
spheroid, and its ellipticity is a certain multiple of the ellipticity of the surface of the
planet. The ratio of the two ellipticities depends partly on the rigidity of the planet,

»”

* T, Sugss, ¢ The Face of the Earth’ (Translation), vol. 2, Oxford, 1906, p. 553.
T Ibid., pp. 258, 299.
1 Ibid., p. 543.
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partly on the ratio of the density of the ocean to the mean density of the planet, and
partly on the angular velocity. Owing to tidal friction, the angular velocity of the
Earth’s rotation is being gradually diminished. The effect of this is that both the
ellipticity of the lithosphere and that of the geoid are heing diminished, and the
difference of these ellipticities is also being diminished. If, therefore, the shape of
the lithosphere were continually adjusted to the instantaneous angular velocity, the
value of the coefficient e of § 57 would diminish continually, and the adjustment
would involve a continually increasing deformation. Hventually the deformation
would be so great that the strength of the material would be too small to withstand
it, and local fractures would take place.® There is, therefore, a constant tendency
tor the sea-level to rise in the polar regions and to fall in the equatorial regions, the
separation between the regions of rising and falling sea-level being marked by the
zero-lines of the zonal harmonic of the second degree, that is, by the parallels of
latitude, about 35° N. and 35°8.  This rise and fall would be checked at intervals by
subsidences, accompanied by series of earthquakes, in equatorial regions.

The effects produced by diminution of the displacement of the centre of gravity,
and by changes in the ellipticity of the equator and in the obliquity of the principal
planes, appear to be of a different character from the effect of diminishing angular
velocity. The former would seem to be spasmodic and occasional, but always in the
same sense at the same place; the latter would appear to consist of continuous
movements in the same sense, extending over long periods, which are followed hy
comparatively short periods of spasmodic change in the opposite sense.

These remarks are frankly speculative, and I am well aware that many causes
which have contributed to geological changes have been left out of sight. They are
put forward as tentative suggestions which, it is hoped, 'may prove to be of some
assistance in the solution of some of the still unsolved problems of geology.

My best thanks are due to Professor W. J. Sonnas and Dr. H. N. Dickson for
much kind help in regard to geological and geographical questions.

* According to a “Note” in “ Nature,” vol. 39 (1889), p. 613, this effect of diminishing speed of rotation
was noted by M. A. Bryrr. I have not seen the paper referred to in the “ Note.”
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